RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1976, Volume 12, Number 5, Pages 944–946 (Mi de2762)  

This article is cited in 4 scientific papers (total in 4 papers)

Short Communications

The number of limit cycles of a certain second order autonumous system

L. A. Cherkas

Minsk Institute of Radio Technology

Full text: PDF file (290 kB)

Bibliographic databases:
UDC: 517.925.12
Received: 14.02.1975

Citation: L. A. Cherkas, “The number of limit cycles of a certain second order autonumous system”, Differ. Uravn., 12:5 (1976), 944–946

Citation in format AMSBIB
\Bibitem{χεπ76}
\by L.~A.~Cherkas
\paper The number of limit cycles of a certain second order autonumous system
\jour Differ. Uravn.
\yr 1976
\vol 12
\issue 5
\pages 944--946
\mathnet{http://mi.mathnet.ru/de2762}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=422759}
\zmath{https://zbmath.org/?q=an:0326.34036}


Linking options:
  • http://mi.mathnet.ru/eng/de2762
  • http://mi.mathnet.ru/eng/de/v12/i5/p944

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Y. Yomdin, “The center problem for the Abel equation, compositions of functions, and moment conditions”, Mosc. Math. J., 3:3 (2003), 1167–1195  mathnet  crossref  mathscinet  zmath
    2. M. Briskin, Y. Yomdin, “Tangential version of Hilbert 16th problem for the Abel equation”, Mosc. Math. J., 5:1 (2005), 23–53  mathnet  crossref  mathscinet  zmath
    3. J. Appl. Industr. Math., 3:3 (2009), 401–408  mathnet  crossref  mathscinet
    4. F. Pakovich, “On rational functions orthogonal to all powers of a given rational function on a curve”, Mosc. Math. J., 13:4 (2013), 693–731  mathnet  crossref  mathscinet
  • Number of views:
    This page:66
    Full text:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020