RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1976, Volume 12, Number 6, Pages 991–998 (Mi de2768)  

This article is cited in 1 scientific paper (total in 1 paper)

Ordinary Differential Equations

A certain limit boundary value problem that does not satisfy S. N. Bernšteǐn's condition and has an application in the theory of capillary phenomena

A. D. Myshkisa, G. V. Sherbinab

a Moscow State University of Transportation
b Physical Engineering Institute of Low Temperatures, UkrSSR Academy of Sciences, Khar'kov

Full text: PDF file (901 kB)

Bibliographic databases:
UDC: 517.927
Received: 06.01.1975

Citation: A. D. Myshkis, G. V. Sherbina, “A certain limit boundary value problem that does not satisfy S. N. Bernšteǐn's condition and has an application in the theory of capillary phenomena”, Differ. Uravn., 12:6 (1976), 991–998

Citation in format AMSBIB
\Bibitem{MysShe76}
\by A.~D.~Myshkis, G.~V.~Sherbina
\paper A certain limit boundary value problem that does not satisfy S. N. Bern{\v s}te{\v\i}n's condition and has an application in the theory of capillary phenomena
\jour Differ. Uravn.
\yr 1976
\vol 12
\issue 6
\pages 991--998
\mathnet{http://mi.mathnet.ru/de2768}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=425231}
\zmath{https://zbmath.org/?q=an:0329.34019}


Linking options:
  • http://mi.mathnet.ru/eng/de2768
  • http://mi.mathnet.ru/eng/de/v12/i6/p991

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. D. Myshkis, “Multivalued solutions of second-order differential equations”, Math. Notes, 66:6 (1999), 719–725  mathnet  crossref  crossref  mathscinet  zmath  isi
  • Number of views:
    This page:96
    Full text:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020