RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1977, Volume 13, Number 4, Pages 601–606 (Mi de3033)  

This article is cited in 15 scientific papers (total in 15 papers)

Ordinary Differential Equations

The Cauchy formula for a functional-differential equation

V. P. Maksimov

Tambov Institute of Chemical Machinery

Full text: PDF file (491 kB)

Bibliographic databases:
UDC: 517.948.34
Received: 04.06.1975

Citation: V. P. Maksimov, “The Cauchy formula for a functional-differential equation”, Differ. Uravn., 13:4 (1977), 601–606

Citation in format AMSBIB
\Bibitem{Mak77}
\by V.~P.~Maksimov
\paper The Cauchy formula for a functional-differential equation
\jour Differ. Uravn.
\yr 1977
\vol 13
\issue 4
\pages 601--606
\mathnet{http://mi.mathnet.ru/de3033}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=473407}
\zmath{https://zbmath.org/?q=an:0367.34054}


Linking options:
  • http://mi.mathnet.ru/eng/de3033
  • http://mi.mathnet.ru/eng/de/v13/i4/p601

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Zh. Munembe, “On the asymptotic behavior of solutions of a system of linear functional-differential equations with delay and periodic parameters”, Russian Math. (Iz. VUZ), 44:4 (2000), 26–33  mathnet  mathscinet  zmath
    2. E. S. Zhukovskii, “The Cauchy function for a functional-differential equation in a Banach space”, Russian Math. (Iz. VUZ), 50:5 (2006), 34–42  mathnet  mathscinet  zmath
    3. K. M. Chudinov, “On the geometric nature of partial and conditional stability”, Russian Math. (Iz. VUZ), 52:3 (2008), 69–77  mathnet  crossref  mathscinet  zmath
    4. N. V. Azbelev, V. P. Maksimov, P. M. Simonov, “Funktsionalno-differentsialnye uravneniya i ikh prilozheniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2009, no. 1, 3–23  mathnet  elib
    5. V. P. Maksimov, A. L. Chadov, “A class of controls for a functional-differential continuous-discrete system”, Russian Math. (Iz. VUZ), 56:9 (2012), 62–65  mathnet  crossref  mathscinet
    6. A. L. Chadov, “K voprosu o kompyuternom issledovanii nepreryvno-diskretnykh modelei”, Izv. IMI UdGU, 2012, no. 1(39), 145–146  mathnet
    7. V. P. Maksimov, “Control of functional differential system in conditions of impulse disturbances”, Russian Math. (Iz. VUZ), 57:9 (2013), 58–61  mathnet  crossref
    8. I. M. Plaksina, “On positiveness of the Cauchy function of a singular linear functional differential equation”, Russian Math. (Iz. VUZ), 57:10 (2013), 13–18  mathnet  crossref
    9. T. L. Sabatulina, V. V. Malygina, “On stability of a differential equation with aftereffect”, Russian Math. (Iz. VUZ), 58:4 (2014), 20–34  mathnet  crossref
    10. V. P. Maksimov, “Nekotorye voprosy teorii upravleniya funktsionalno-differentsialnymi sistemami”, Izv. IMI UdGU, 2015, no. 2(46), 112–119  mathnet  elib
    11. V. P. Maksimov, “On a class of optimal control problems for functional differential systems”, Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S114–S124  mathnet  crossref  crossref  isi  elib
    12. V. P. Maksimov, “Dostizhimye znacheniya tselevykh funktsionalov dlya funktsionalno-differentsialnoi sistemy s impulsnym vozdeistviem”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:123 (2018), 441–447  mathnet  crossref  elib
    13. V. P. Maksimov, “K voprosu o postroenii i otsenkakh matritsy Koshi dlya sistem s posledeistviem”, Tr. IMM UrO RAN, 25, no. 3, 2019, 153–162  mathnet  crossref  elib
    14. V. P. Maksimov, “The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:1 (2019), 40–51  mathnet  crossref  elib
    15. V. P. Maksimov, “On a class of linear continuous-discrete systems with discrete memory”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:3 (2020), 385–395  mathnet  crossref
  • Number of views:
    This page:178
    Full text:90

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021