|
This article is cited in 15 scientific papers (total in 15 papers)
Ordinary Differential Equations
The Cauchy formula for a functional-differential equation
V. P. Maksimov Tambov Institute of Chemical Machinery
Full text:
PDF file (491 kB)
Bibliographic databases:
UDC:
517.948.34 Received: 04.06.1975
Citation:
V. P. Maksimov, “The Cauchy formula for a functional-differential equation”, Differ. Uravn., 13:4 (1977), 601–606
Citation in format AMSBIB
\Bibitem{Mak77}
\by V.~P.~Maksimov
\paper The Cauchy formula for a functional-differential equation
\jour Differ. Uravn.
\yr 1977
\vol 13
\issue 4
\pages 601--606
\mathnet{http://mi.mathnet.ru/de3033}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=473407}
\zmath{https://zbmath.org/?q=an:0367.34054}
Linking options:
http://mi.mathnet.ru/eng/de3033 http://mi.mathnet.ru/eng/de/v13/i4/p601
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Zh. Munembe, “On the asymptotic behavior of solutions of a system of linear functional-differential equations with delay and periodic parameters”, Russian Math. (Iz. VUZ), 44:4 (2000), 26–33
-
E. S. Zhukovskii, “The Cauchy function for a functional-differential equation in a Banach space”, Russian Math. (Iz. VUZ), 50:5 (2006), 34–42
-
K. M. Chudinov, “On the geometric nature of partial and conditional stability”, Russian Math. (Iz. VUZ), 52:3 (2008), 69–77
-
N. V. Azbelev, V. P. Maksimov, P. M. Simonov, “Funktsionalno-differentsialnye uravneniya i ikh prilozheniya”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2009, no. 1, 3–23
-
V. P. Maksimov, A. L. Chadov, “A class of controls for a functional-differential continuous-discrete system”, Russian Math. (Iz. VUZ), 56:9 (2012), 62–65
-
A. L. Chadov, “K voprosu o kompyuternom issledovanii nepreryvno-diskretnykh modelei”, Izv. IMI UdGU, 2012, no. 1(39), 145–146
-
V. P. Maksimov, “Control of functional differential system in conditions of impulse disturbances”, Russian Math. (Iz. VUZ), 57:9 (2013), 58–61
-
I. M. Plaksina, “On positiveness of the Cauchy function of a singular linear functional differential equation”, Russian Math. (Iz. VUZ), 57:10 (2013), 13–18
-
T. L. Sabatulina, V. V. Malygina, “On stability of a differential equation with aftereffect”, Russian Math. (Iz. VUZ), 58:4 (2014), 20–34
-
V. P. Maksimov, “Nekotorye voprosy teorii upravleniya funktsionalno-differentsialnymi sistemami”, Izv. IMI UdGU, 2015, no. 2(46), 112–119
-
V. P. Maksimov, “On a class of optimal control problems for functional differential systems”, Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S114–S124
-
V. P. Maksimov, “Dostizhimye znacheniya tselevykh funktsionalov dlya funktsionalno-differentsialnoi sistemy s impulsnym vozdeistviem”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 23:123 (2018), 441–447
-
V. P. Maksimov, “K voprosu o postroenii i otsenkakh matritsy Koshi dlya sistem s posledeistviem”, Tr. IMM UrO RAN, 25, no. 3, 2019, 153–162
-
V. P. Maksimov, “The structure of the Cauchy operator to a linear continuous-discrete functional differential system with aftereffect and some properties of its components”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:1 (2019), 40–51
-
V. P. Maksimov, “On a class of linear continuous-discrete systems with discrete memory”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:3 (2020), 385–395
|
Number of views: |
This page: | 178 | Full text: | 90 |
|