RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1980, Volume 16, Number 6, Pages 980–1009 (Mi de4005)  

This article is cited in 7 scientific papers (total in 7 papers)

Ordinary Differential Equations

Necessary and sufficient conditions for spatial decompositions to be bases and to be equiconvergent with a trigonometric series. II

V. A. Il'inab

a Lomonosov Moscow State University
b V. A. Steklov Mathematical Institute, USSR Academy of Sciences

Full text: PDF file (2521 kB)

Bibliographic databases:
UDC: 517.927.25
Received: 18.01.1980

Citation: V. A. Il'in, “Necessary and sufficient conditions for spatial decompositions to be bases and to be equiconvergent with a trigonometric series. II”, Differ. Uravn., 16:6 (1980), 980–1009

Citation in format AMSBIB
\Bibitem{Ili80}
\by V.~A.~Il'in
\paper Necessary and sufficient conditions for spatial decompositions to be bases and to be equiconvergent with a trigonometric series.~II
\jour Differ. Uravn.
\yr 1980
\vol 16
\issue 6
\pages 980--1009
\mathnet{http://mi.mathnet.ru/de4005}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=579678}
\zmath{https://zbmath.org/?q=an:0449.42025}


Linking options:
  • http://mi.mathnet.ru/eng/de4005
  • http://mi.mathnet.ru/eng/de/v16/i6/p980

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. I. Vahabov, “On equiconvergence of expansions in trigonometric Fourier series and in principal functions of ordinary differential operators”, Math. USSR-Izv., 24:3 (1985), 567–582  mathnet  crossref  mathscinet  zmath
    2. P. M. Kudishin, “An equiconvergence theorem for higher-order differential operators with a singularity”, Russian Math. (Iz. VUZ), 42:1 (1998), 39–48  mathnet  mathscinet  zmath  elib
    3. I. S. Lomov, “The basis property on compact sets of root functions of second-order differential operators”, Russian Math. (Iz. VUZ), 42:4 (1998), 37–50  mathnet  mathscinet
    4. V. P. Kurdyumov, A. P. Khromov, “Riesz Bases of Eigenfunctions of an Integral Operator with a Variable Limit of Integration”, Math. Notes, 76:1 (2004), 90–102  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. V. V. Kornev, A. P. Khromov, “Operator integrirovaniya s involyutsiei, imeyuschei stepennuyu osobennost”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 8:4 (2008), 18–33  mathnet  elib
    6. V. P. Kurdyumov, A. P. Khromov, “The Riesz bases consisting of eigen and associated functions for a functional differential operator with variable structure”, Russian Math. (Iz. VUZ), 54:2 (2010), 33–45  mathnet  crossref  mathscinet  zmath  elib
    7. V. P. Kurdyumov, A. P. Khromov, “Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals”, Izv. Math., 76:6 (2012), 1175–1189  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Number of views:
    This page:78
    Full text:38

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020