Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1981, Volume 17, Number 5, Pages 789–795 (Mi de4247)  

This article is cited in 1 scientific paper (total in 1 paper)

Ordinary Differential Equations

The Cauchy problem for operator-differential equations of Euler–Poisson–Darboux type

N. V. Gavrilova, N. J. Yurchuk

V. I. Lenin Belorusskii State University

Full text: PDF file (689 kB)

Bibliographic databases:
UDC: 517.946
Received: 03.07.1978

Citation: N. V. Gavrilova, N. J. Yurchuk, “The Cauchy problem for operator-differential equations of Euler–Poisson–Darboux type”, Differ. Uravn., 17:5 (1981), 789–795

Citation in format AMSBIB
\Bibitem{GavYur81}
\by N.~V.~Gavrilova, N.~J.~Yurchuk
\paper The Cauchy problem for operator-differential equations of Euler--Poisson--Darboux type
\jour Differ. Uravn.
\yr 1981
\vol 17
\issue 5
\pages 789--795
\mathnet{http://mi.mathnet.ru/de4247}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=616915}


Linking options:
  • http://mi.mathnet.ru/eng/de4247
  • http://mi.mathnet.ru/eng/de/v17/i5/p789

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. F. T. Baranovskii, “The Cauchy problem with modified initial data for the generalized Euler–Poisson–Darboux equation”, Math. USSR-Sb., 48:1 (1984), 141–157  mathnet  crossref  mathscinet  zmath
  • Number of views:
    This page:64
    Full text:37

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022