Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1994, Volume 30, Number 5, Pages 791–796 (Mi de8368)  

This article is cited in 10 scientific papers (total in 10 papers)

Ordinary Differential Equations

The Hamilton property of Painlevé equations and the method of isomonodromic deformations

B. I. Suleimanov

Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa

Full text: PDF file (704 kB)

English version:
Differential Equations, 1994, 30:5, 726–732

Bibliographic databases:
UDC: 517.925
Received: 23.03.1992

Citation: B. I. Suleimanov, “The Hamilton property of Painlevé equations and the method of isomonodromic deformations”, Differ. Uravn., 30:5 (1994), 791–796; Differ. Equ., 30:5 (1994), 726–732

Citation in format AMSBIB
\Bibitem{Sul94}
\by B.~I.~Suleimanov
\paper The Hamilton property of Painlev\'e equations and the method of isomonodromic deformations
\jour Differ. Uravn.
\yr 1994
\vol 30
\issue 5
\pages 791--796
\mathnet{http://mi.mathnet.ru/de8368}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1306348}
\transl
\jour Differ. Equ.
\yr 1994
\vol 30
\issue 5
\pages 726--732


Linking options:
  • http://mi.mathnet.ru/eng/de8368
  • http://mi.mathnet.ru/eng/de/v30/i5/p791

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. I. Suleimanov, ““Quantizations” of the second Painlevé equation and the problem of the equivalence of its $L$$A$ pairs”, Theoret. and Math. Phys., 156:3 (2008), 1280–1291  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. D. P. Novikov, “The $2{\times}2$ matrix Schlesinger system and the Belavin–Polyakov–Zamolodchikov system”, Theoret. and Math. Phys., 161:2 (2009), 1485–1496  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. B. I. Suleimanov, ““Kvantovaya” linearizatsiya uravnenii Penleve kak komponenta ikh $L,A$ par”, Ufimsk. matem. zhurn., 4:2 (2012), 127–135  mathnet
    4. A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. B. I. Suleimanov, ““Quantizations” of Higher Hamiltonian Analogues of the Painlevé I and Painlevé II Equations with Two Degrees of Freedom”, Funct. Anal. Appl., 48:3 (2014), 198–207  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Classification of isomonodromy problems on elliptic curves”, Russian Math. Surveys, 69:1 (2014), 35–118  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    7. D. P. Novikov, B. I. Suleimanov, ““Quantization” of an isomonodromic Hamiltonian Garnier system with two degrees of freedom”, Theoret. and Math. Phys., 187:1 (2016), 479–496  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. B. I. Suleimanov, “Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential”, Ufa Math. J., 8:3 (2016), 136–154  mathnet  crossref  mathscinet  isi  elib
    9. V. A. Pavlenko, B. I. Suleimanov, “Solutions to analogues of non-stationary Schrödinger equations defined by isomonodromic Hamilton system $H^{2+1+1+1}$”, Ufa Math. J., 10:4 (2018), 92–102  mathnet  crossref  isi
    10. V. V. Tsegel'nik, “Properties of solutions of two second-order differential equations with the Painlevé property”, Theoret. and Math. Phys., 206:3 (2021), 315–320  mathnet  crossref  crossref  mathscinet  isi
  • Number of views:
    This page:109
    Full text:53

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021