RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1995, Volume 31, Number 5, Pages 858–869 (Mi de8765)  

This article is cited in 3 scientific papers (total in 3 papers)

Numerical methods

On the rate of convergence of the Bubnov–Galerkin method for a nonlinear problem in the theory of elastic shells

S. E. Zhelezovsky

Saratov State Technical University

Full text: PDF file (1385 kB)

English version:
Differential Equations, 1995, 31:5, 796–807

Bibliographic databases:
UDC: 519.634
Received: 22.06.1993

Citation: S. E. Zhelezovsky, “On the rate of convergence of the Bubnov–Galerkin method for a nonlinear problem in the theory of elastic shells”, Differ. Uravn., 31:5 (1995), 858–869; Differ. Equ., 31:5 (1995), 796–807

Citation in format AMSBIB
\Bibitem{Zhe95}
\by S.~E.~Zhelezovsky
\paper On the rate of convergence of the Bubnov--Galerkin method for a nonlinear problem in the theory of elastic shells
\jour Differ. Uravn.
\yr 1995
\vol 31
\issue 5
\pages 858--869
\mathnet{http://mi.mathnet.ru/de8765}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1370806}
\transl
\jour Differ. Equ.
\yr 1995
\vol 31
\issue 5
\pages 796--807


Linking options:
  • http://mi.mathnet.ru/eng/de8765
  • http://mi.mathnet.ru/eng/de/v31/i5/p858

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. E. Zhelezovsky, G. M. Ivanov, N. P. Krivonogov, “The rate of convergence of Galerkin approximations for a nonlinear thermoelasticity problem for thin plates”, Comput. Math. Math. Phys., 38:1 (1998), 153–164  mathnet  mathscinet  zmath
    2. S. E. Zhelezovsky, “On the existence and uniqueness of a solution and the rate of convergence of the Bubnov–Galerkin method for a quasilinear evolution problem in a Hilbert space”, Russian Math. (Iz. VUZ), 42:10 (1998), 35–43  mathnet  mathscinet  zmath
    3. S. E. Zhelezovsky, “Error estimation for the Galerkin method as applied to a nonlinear coupled shell thermoelasticity problem with a three-dimensional heat equation”, Comput. Math. Math. Phys., 45:9 (2005), 1618–1631  mathnet  mathscinet  zmath
  • Number of views:
    This page:56
    Full text:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019