RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1997, Volume 33, Number 3, Pages 324–328 (Mi de9210)  

Ordinary Differential Equations

Spectral expansions that correspond to the Liouville operator generated by the Schrödinger operator with a matrix potential satisfying the Kato condition

V. A. Il'in, A. V. Kurkina

Lomonosov Moscow State University

Full text: PDF file (794 kB)

English version:
Differential Equations, 1997, 33:3, 321–325

Bibliographic databases:
UDC: 517.984.5
Received: 29.12.1996

Citation: V. A. Il'in, A. V. Kurkina, “Spectral expansions that correspond to the Liouville operator generated by the Schrödinger operator with a matrix potential satisfying the Kato condition”, Differ. Uravn., 33:3 (1997), 324–328; Differ. Equ., 33:3 (1997), 321–325

Citation in format AMSBIB
\Bibitem{IliKur97}
\by V.~A.~Il'in, A.~V.~Kurkina
\paper Spectral expansions that correspond to the Liouville operator generated by the Schr\"odinger operator with a matrix potential satisfying the Kato condition
\jour Differ. Uravn.
\yr 1997
\vol 33
\issue 3
\pages 324--328
\mathnet{http://mi.mathnet.ru/de9210}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1615376}
\transl
\jour Differ. Equ.
\yr 1997
\vol 33
\issue 3
\pages 321--325


Linking options:
  • http://mi.mathnet.ru/eng/de9210
  • http://mi.mathnet.ru/eng/de/v33/i3/p324

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:65
    Full text:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020