RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1999, Volume 35, Number 1, Pages 43–50 (Mi de9853)  

This article is cited in 5 scientific papers (total in 5 papers)

Ordinary Differential Equations

Order characteristics of existence properties of strong linear finite-dimensional differential models

A. V. Daneeva, V. A. Rusanovb

a Irkutsk State Technical University
b Irkutsk Computer Centre, Siberian Branch of RAS

Full text: PDF file (1727 kB)

English version:
Differential Equations, 1999, 35:1, 42–49

Bibliographic databases:
UDC: 517.977
Received: 25.03.1997

Citation: A. V. Daneev, V. A. Rusanov, “Order characteristics of existence properties of strong linear finite-dimensional differential models”, Differ. Uravn., 35:1 (1999), 43–50; Differ. Equ., 35:1 (1999), 42–49

Citation in format AMSBIB
\Bibitem{DanRus99}
\by A.~V.~Daneev, V.~A.~Rusanov
\paper Order characteristics of existence properties of strong linear finite-dimensional differential models
\jour Differ. Uravn.
\yr 1999
\vol 35
\issue 1
\pages 43--50
\mathnet{http://mi.mathnet.ru/de9853}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1723201}
\transl
\jour Differ. Equ.
\yr 1999
\vol 35
\issue 1
\pages 42--49


Linking options:
  • http://mi.mathnet.ru/eng/de9853
  • http://mi.mathnet.ru/eng/de/v35/i1/p43

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Daneev, V. A. Rusanov, “On a class of strong differential models over a countable set of dynamic processes of finite character”, Russian Math. (Iz. VUZ), 44:2 (2000), 30–38  mathnet  mathscinet  zmath
    2. A. V. Daneev, V. A. Rusanov, “A geometric approach to the solution of some inverse problems in system analysis”, Russian Math. (Iz. VUZ), 45:10 (2001), 17–26  mathnet  mathscinet  zmath
    3. A. V. Daneev, V. A. Rusanov, D. Yu. Sharpinskii, “The entropy maximum principle in the structural identification of dynamical systems: an analytic approach”, Russian Math. (Iz. VUZ), 49:11 (2005), 14–22  mathnet  mathscinet
    4. A. V. Daneev, A. V. Lakeev, V. A. Rusanov, “On the theory of realization of strong differential models. II”, J. Appl. Industr. Math., 1:3 (2007), 283–292  mathnet  crossref  mathscinet
    5. A. V. Daneev, A. V. Lakeev, V. A. Rusanov, M. V. Rusanov, “On the theory of realization of strong differential models. I”, J. Appl. Industr. Math., 1:3 (2007), 273–282  mathnet  crossref  mathscinet
  • Number of views:
    This page:36
    Full text:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019