|
This article is cited in 2 scientific papers (total in 2 papers)
Review articles
Stability of operator-difference schemes
A. A. Samarskiiab, P. N. Vabishchevichab, A. V. Gulinab a Institute for Mathematical Modelling, Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
Full text:
PDF file (6007 kB)
English version:
Differential Equations, 1999, 35:2, 151–186
Bibliographic databases:
UDC:
519.63 Received: 26.10.1998
Citation:
A. A. Samarskii, P. N. Vabishchevich, A. V. Gulin, “Stability of operator-difference schemes”, Differ. Uravn., 35:2 (1999), 152–187; Differ. Equ., 35:2 (1999), 151–186
Citation in format AMSBIB
\Bibitem{SamVabGul99}
\by A.~A.~Samarskii, P.~N.~Vabishchevich, A.~V.~Gulin
\paper Stability of operator-difference schemes
\jour Differ. Uravn.
\yr 1999
\vol 35
\issue 2
\pages 152--187
\mathnet{http://mi.mathnet.ru/de9871}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1726400}
\transl
\jour Differ. Equ.
\yr 1999
\vol 35
\issue 2
\pages 151--186
Linking options:
http://mi.mathnet.ru/eng/de9871 http://mi.mathnet.ru/eng/de/v35/i2/p152
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. P. Ilyutko, “Granitsy ustoichivosti raznostnykh skhem na neravnomernykh setkakh”, Matem. modelirovanie, 17:11 (2005), 85–92
-
A. D. Lyashko, E. M. Fedotov, “Correctness of double-layer multicomponent difference schemes for nonlinear hyperbolic equations”, Russian Math. (Iz. VUZ), 60:9 (2006), 47–54
|
Number of views: |
This page: | 115 | Full text: | 36 |
|