RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1999, Volume 35, Number 2, Pages 188–199 (Mi de9872)  

Partial Differential Equations

An estimate for the spectral function of a selfadjoint extension in $\mathbb R^N$ of the Schrödinger operator with a potential satisfying the strengthened Stummel condition

V. A. Il'in

Lomonosov Moscow State University

Full text: PDF file (1521 kB)

English version:
Differential Equations, 1999, 35:2, 187–198

Bibliographic databases:
UDC: 517.984.5
Received: 23.11.1998

Citation: V. A. Il'in, “An estimate for the spectral function of a selfadjoint extension in $\mathbb R^N$ of the Schrödinger operator with a potential satisfying the strengthened Stummel condition”, Differ. Uravn., 35:2 (1999), 188–199; Differ. Equ., 35:2 (1999), 187–198

Citation in format AMSBIB
\Bibitem{Ili99}
\by V.~A.~Il'in
\paper An estimate for the spectral function of a selfadjoint extension in $\mathbb R^N$ of the Schr\"odinger operator with a potential satisfying the strengthened Stummel condition
\jour Differ. Uravn.
\yr 1999
\vol 35
\issue 2
\pages 188--199
\mathnet{http://mi.mathnet.ru/de9872}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1726401}
\transl
\jour Differ. Equ.
\yr 1999
\vol 35
\issue 2
\pages 187--198


Linking options:
  • http://mi.mathnet.ru/eng/de9872
  • http://mi.mathnet.ru/eng/de/v35/i2/p188

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:67
    Full text:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019