|
This article is cited in 3 scientific papers (total in 3 papers)
Numerical methods
A dynamic problem in the theory of elasticity in the “velocities-stresses” formulation
A. N. Konovalov Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk
Full text:
PDF file (1946 kB)
English version:
Differential Equations, 1999, 35:2, 239–249
Bibliographic databases:
UDC:
519.63 Received: 26.10.1998
Citation:
A. N. Konovalov, “A dynamic problem in the theory of elasticity in the “velocities-stresses” formulation”, Differ. Uravn., 35:2 (1999), 238–248; Differ. Equ., 35:2 (1999), 239–249
Citation in format AMSBIB
\Bibitem{Kon99}
\by A.~N.~Konovalov
\paper A dynamic problem in the theory of elasticity in the ``velocities-stresses'' formulation
\jour Differ. Uravn.
\yr 1999
\vol 35
\issue 2
\pages 238--248
\mathnet{http://mi.mathnet.ru/de9878}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1726407}
\transl
\jour Differ. Equ.
\yr 1999
\vol 35
\issue 2
\pages 239--249
Linking options:
http://mi.mathnet.ru/eng/de9878 http://mi.mathnet.ru/eng/de/v35/i2/p238
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. B. Sorokin, “Sopryazhenno-operatornaya model dinamicheskoi zadachi teorii plastin”, Sib. zhurn. vychisl. matem., 6:3 (2003), 299–311
-
M. M. Bukenov, “Postanovka dinamicheskoi zadachi lineinoi vyazkouprugosti v skorostyakh napryazhenii”, Sib. zhurn. vychisl. matem., 8:4 (2005), 289–295
-
P. N. Vabishchevich, “Operator-Difference Schemes for a Class of Systems of Evolution Equations”, Math. Notes, 93:1 (2013), 36–49
|
Number of views: |
This page: | 137 | Full text: | 52 |
|