RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1999, Volume 35, Number 3, Pages 319–324 (Mi de9890)  

This article is cited in 1 scientific paper (total in 1 paper)

Partial Differential Equations

An approximation of the Green function for the Schrödinger equation

A. A. Arsen'ev

Lomonosov Moscow State University

Full text: PDF file (825 kB)

English version:
Differential Equations, 1999, 35:3, 320–325

Bibliographic databases:
UDC: 517.958
Received: 26.10.1998

Citation: A. A. Arsen'ev, “An approximation of the Green function for the Schrödinger equation”, Differ. Uravn., 35:3 (1999), 319–324; Differ. Equ., 35:3 (1999), 320–325

Citation in format AMSBIB
\Bibitem{Ars99}
\by A.~A.~Arsen'ev
\paper An approximation of the Green function for the Schr\"odinger equation
\jour Differ. Uravn.
\yr 1999
\vol 35
\issue 3
\pages 319--324
\mathnet{http://mi.mathnet.ru/de9890}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1726798}
\transl
\jour Differ. Equ.
\yr 1999
\vol 35
\issue 3
\pages 320--325


Linking options:
  • http://mi.mathnet.ru/eng/de9890
  • http://mi.mathnet.ru/eng/de/v35/i3/p319

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Arsen'ev, “Approximation of the solution of the Cauchy problem for the Neumann–Liouville equation”, Comput. Math. Math. Phys., 44:10 (2004), 1757–1761  mathnet  mathscinet  zmath
  • Number of views:
    This page:50
    Full text:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019