RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differ. Uravn., 1999, Volume 35, Number 6, Pages 822–830 (Mi de9937)  

Integral Equations and Integral-Differential

On an estimate for solutions of the Cauchy problem with an arbitrary-order initial jump for linear singularly perturbed integrodifferential equations

K. A. Kasymov, M. K. Dauylbaev

Al-Farabi Kazakh National University

Full text: PDF file (977 kB)

English version:
Differential Equations, 1999, 35:6, 825–834

Bibliographic databases:
UDC: 517.968.7
Received: 15.04.1998

Citation: K. A. Kasymov, M. K. Dauylbaev, “On an estimate for solutions of the Cauchy problem with an arbitrary-order initial jump for linear singularly perturbed integrodifferential equations”, Differ. Uravn., 35:6 (1999), 822–830; Differ. Equ., 35:6 (1999), 825–834

Citation in format AMSBIB
\Bibitem{KasDau99}
\by K.~A.~Kasymov, M.~K.~Dauylbaev
\paper On an estimate for solutions of the Cauchy problem with an arbitrary-order initial jump for linear singularly perturbed integrodifferential equations
\jour Differ. Uravn.
\yr 1999
\vol 35
\issue 6
\pages 822--830
\mathnet{http://mi.mathnet.ru/de9937}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1732119}
\transl
\jour Differ. Equ.
\yr 1999
\vol 35
\issue 6
\pages 825--834


Linking options:
  • http://mi.mathnet.ru/eng/de9937
  • http://mi.mathnet.ru/eng/de/v35/i6/p822

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:56
    Full text:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019