RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2017, Issue 7, Pages 77–85 (Mi demr40)  

This article is cited in 1 scientific paper (total in 1 paper)

Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions

M. S. Sultanakhmedov

Daghestan scientific center of RAS

Abstract: We consider the system of functions ${\psi}_{1,n}(x, N)$ ($n=0,1,\ldots,$ $N$), orthonormal in Sobolev sense and generated by a given orthonormal on finite grid $\Omega_N=\{ 0,1,\ldots,N-1 \}$ system of functions ${\psi}_{n}(x,N)$ $( n=0,1,\ldots,N-1)$. These new functions are orthonormal with respect to the inner product of the following type: $\langle f,g\rangle = f(0)g(0)+ \sum_{j=0}^{N-1}\Delta f(j)\Delta g(j)\rho(j)$. It is shown that the finite Fourier series by the functions ${\psi}_{1,n}(x)$ and their partial sums are convenient and a very effective tool for the approximate solution of the Cauchy problem for nonlinear difference equations.

Keywords: Sobolev orthogonal functions; functions orthogonal on the finite grid; finite grid; uniform grid; approximation of discrete functions; mixed series by the functions orthogonal on a uniform grid; iterative process for the approximate solution of difference equations

DOI: https://doi.org/10.31029/demr.7.9

Full text: PDF file (349 kB)
Full text: http://mathreports.ru/.../cauchy-problem-for-the-difference-equation-and-sobolev-orthogonal-functions-on-the-finite-grid-gener
References: PDF file   HTML file

UDC: 517.912
Received: 07.04.2017
Revised: 17.04.2017
Accepted:18.04.2017
Language:

Citation: M. S. Sultanakhmedov, “Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions”, Daghestan Electronic Mathematical Reports, 2017, no. 7, 77–85

Citation in format AMSBIB
\Bibitem{Sul17}
\by M.~S.~Sultanakhmedov
\paper Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions
\jour Daghestan Electronic Mathematical Reports
\yr 2017
\issue 7
\pages 77--85
\mathnet{http://mi.mathnet.ru/demr40}
\crossref{https://doi.org/10.31029/demr.7.9}


Linking options:
  • http://mi.mathnet.ru/eng/demr40
  • http://mi.mathnet.ru/eng/demr/y2017/i7/p77

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 29–39  mathnet  crossref
  • Daghestan Electronic Mathematical Reports
    Number of views:
    This page:32
    Full text:6
    References:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019