RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2008, Volume 20, Issue 2, Pages 46–62 (Mi dm1003)  

This article is cited in 3 scientific papers (total in 3 papers)

On the complexity of decoding Boolean cube splitting into cube faces

V. V. Osokin


Abstract: We consider the known problem of decoding functions of Boolean algebra, that is, we need to completely restore the table of values of a function defined on an $n$-dimensional Boolean cube $B^n$ using its values on some subset of $B^n$. If the function belongs to some narrower class than the class of all functions of $n$ variables (for example, to the set of monotone or threshold functions), then only vectors of a subset of $n$-dimensional Boolean cube can be required to completely determine the function. In the paper, we consider the class of functions which split the $n$-dimensional Boolean cube into cube faces. An asymptotic estimate for complexity of decoding functions that belong to any subclass of this class with fixed structure is obtained.

DOI: https://doi.org/10.4213/dm1003

Full text: PDF file (211 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2008, 18:2, 155–172

Bibliographic databases:

UDC: 519.7
Received: 10.07.2006

Citation: V. V. Osokin, “On the complexity of decoding Boolean cube splitting into cube faces”, Diskr. Mat., 20:2 (2008), 46–62; Discrete Math. Appl., 18:2 (2008), 155–172

Citation in format AMSBIB
\Bibitem{Oso08}
\by V.~V.~Osokin
\paper On the complexity of decoding Boolean cube splitting into cube faces
\jour Diskr. Mat.
\yr 2008
\vol 20
\issue 2
\pages 46--62
\mathnet{http://mi.mathnet.ru/dm1003}
\crossref{https://doi.org/10.4213/dm1003}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2450033}
\zmath{https://zbmath.org/?q=an:1192.68230}
\elib{http://elibrary.ru/item.asp?id=20730243}
\transl
\jour Discrete Math. Appl.
\yr 2008
\vol 18
\issue 2
\pages 155--172
\crossref{https://doi.org/10.1515/DMA.2008.012}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-44449178478}


Linking options:
  • http://mi.mathnet.ru/eng/dm1003
  • https://doi.org/10.4213/dm1003
  • http://mi.mathnet.ru/eng/dm/v20/i2/p46

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. E. Gasanov, “Information storage and search complexity theory”, J. Math. Sci., 168:1 (2010), 32–48  mathnet  crossref  mathscinet
    2. V. V. Osokin, “On learning monotone Boolean functions with irrelevant variables”, Discrete Math. Appl., 20:3 (2010), 307–320  mathnet  crossref  crossref  mathscinet  zmath  elib
    3. Z. A. Niyazova, “Rasshifrovka arifmeticheskikh summ monotonnykh kon'yunktsii”, Intellektualnye sistemy. Teoriya i prilozheniya, 19:4 (2015), 169–195  mathnet
  • Дискретная математика
    Number of views:
    This page:410
    Full text:126
    References:38
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020