RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2009, Volume 21, Issue 2, Pages 75–87 (Mi dm1047)  

This article is cited in 1 scientific paper (total in 1 paper)

On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions

M. A. Podkolzina


Abstract: We consider the problem on completeness of sets of $S$-functions, the determinate functions such that the automaton calculating them realises in each state functions which emanate no value. We assume that each set of $S$-functions whose completeness is checked in this paper contains all $S$-functions depending on at most one variable. We describe all $A$-precomplete classes of such sets. It is shown that there exists an algorithm recognising $A$-completeness of $S$-sets of one-place determinate functions containing all one-place determinate $S$-functions.

DOI: https://doi.org/10.4213/dm1047

Full text: PDF file (163 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2009, 19:3, 263–276

Bibliographic databases:

UDC: 519.7
Received: 17.09.2008

Citation: M. A. Podkolzina, “On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions”, Diskr. Mat., 21:2 (2009), 75–87; Discrete Math. Appl., 19:3 (2009), 263–276

Citation in format AMSBIB
\Bibitem{Pod09}
\by M.~A.~Podkolzina
\paper On completeness and $A$-completeness of $S$-sets of determinate functions containing all one-place determinate $S$-functions
\jour Diskr. Mat.
\yr 2009
\vol 21
\issue 2
\pages 75--87
\mathnet{http://mi.mathnet.ru/dm1047}
\crossref{https://doi.org/10.4213/dm1047}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2562228}
\elib{https://elibrary.ru/item.asp?id=20730287}
\transl
\jour Discrete Math. Appl.
\yr 2009
\vol 19
\issue 3
\pages 263--276
\crossref{https://doi.org/10.1515/DMA.2009.015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67849130358}


Linking options:
  • http://mi.mathnet.ru/eng/dm1047
  • https://doi.org/10.4213/dm1047
  • http://mi.mathnet.ru/eng/dm/v21/i2/p75

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Buevich, M. A. Podkolzina, “On algorithmic solvability of the $A$-completeness problem for systems of boundedly determinate functions containing all one-place boundedly determinate $S$-functions”, Discrete Math. Appl., 22:5-6 (2012), 555–569  mathnet  crossref  crossref  mathscinet  elib
  • Дискретная математика
    Number of views:
    This page:193
    Full text:112
    References:40
    First page:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020