RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2009, Volume 21, Issue 2, Pages 126–137 (Mi dm1052)  

This article is cited in 1 scientific paper (total in 1 paper)

On a class of statistics of polynomial samples

B. I. Selivanov


Abstract: We consider $M\ge1$ independent samples each of which is a realisation of some polynomial scheme. The number of outcomes $N$ and the number of samples $M$ are fixed, the sample sizes grow without bound. We study the asymptotic properties of statistics of the form $g(\overline\xi)$, where $g(\overline\xi)$ is a differentiable function of $MN$ real-valued variables, is the vector of relative frequencies of outcomes in samples. Statistics of such a kind are playing an important part in the applied statistical analysis.
In this research we expand the capabilities of the well-known $\delta$-method (the linearisation method) in the case of polynomial samples. We prove the asymptotic normality and convergence in distribution of the statistics $g(\overline\xi)$ to quadratic forms of normal random variables (both for the fixed probabilities of outcomes in the case of the null hypothesis and for the case of contigual alternatives to it). We give conditions for both types of convergence.

DOI: https://doi.org/10.4213/dm1052

Full text: PDF file (145 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2009, 19:3, 309–320

Bibliographic databases:

Document Type: Article
UDC: 519.2
Received: 30.11.2007

Citation: B. I. Selivanov, “On a class of statistics of polynomial samples”, Diskr. Mat., 21:2 (2009), 126–137; Discrete Math. Appl., 19:3 (2009), 309–320

Citation in format AMSBIB
\Bibitem{Sel09}
\by B.~I.~Selivanov
\paper On a~class of statistics of polynomial samples
\jour Diskr. Mat.
\yr 2009
\vol 21
\issue 2
\pages 126--137
\mathnet{http://mi.mathnet.ru/dm1052}
\crossref{https://doi.org/10.4213/dm1052}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2562233}
\elib{http://elibrary.ru/item.asp?id=20730292}
\transl
\jour Discrete Math. Appl.
\yr 2009
\vol 19
\issue 3
\pages 309--320
\crossref{https://doi.org/10.1515/DMA.2009.019}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67849118550}


Linking options:
  • http://mi.mathnet.ru/eng/dm1052
  • https://doi.org/10.4213/dm1052
  • http://mi.mathnet.ru/eng/dm/v21/i2/p126

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. M. Zubkov, B. I. Selivanov, “On a statistic for testing the homogeneity of polynomial samples”, Discrete Math. Appl., 25:2 (2015), 109–120  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Дискретная математика
    Number of views:
    This page:208
    Full text:73
    References:34
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019