RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2010, Volume 22, Issue 2, Pages 133–147 (Mi dm1100)  

The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice

V. P. Grishukhin


Abstract: The paper contains a detailed description of the Voronoi polyhedra $P_V(E_6)$ of the rooted lattice $E_6$ and of the lattice dual to $E_6$. For these polyhedra, tables of types of all faces and the number of faces of each type are given. It is known that the polyhedron $P_V(E_6)$ is the union of the Schläfli polyhedron $P_\mathrm{Schl}$ and its antipodal polyhedron $-P_\mathrm{Schl}$. In this paper, it is proved that is the intersection of these polyhedra.

DOI: https://doi.org/10.4213/dm1100

Full text: PDF file (190 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2011, 21:1, 91–108

Bibliographic databases:

UDC: 511.9
Received: 21.11.2007

Citation: V. P. Grishukhin, “The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice”, Diskr. Mat., 22:2 (2010), 133–147; Discrete Math. Appl., 21:1 (2011), 91–108

Citation in format AMSBIB
\Bibitem{Gri10}
\by V.~P.~Grishukhin
\paper The Voronoi polyhedra of the rooted lattice $E_6$ and of its dual lattice
\jour Diskr. Mat.
\yr 2010
\vol 22
\issue 2
\pages 133--147
\mathnet{http://mi.mathnet.ru/dm1100}
\crossref{https://doi.org/10.4213/dm1100}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2730133}
\elib{http://elibrary.ru/item.asp?id=20730340}
\transl
\jour Discrete Math. Appl.
\yr 2011
\vol 21
\issue 1
\pages 91--108
\crossref{https://doi.org/10.1515/DMA.2011.007}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953331813}


Linking options:
  • http://mi.mathnet.ru/eng/dm1100
  • https://doi.org/10.4213/dm1100
  • http://mi.mathnet.ru/eng/dm/v22/i2/p133

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:400
    Full text:95
    References:36
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019