RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2010, Volume 22, Issue 3, Pages 75–82 (Mi dm1108)  

This article is cited in 1 scientific paper (total in 1 paper)

On large distances between neighbouring zeros of the Riemann zeta-function

R. N. Boyarinov


Abstract: A new estimate of the number of zeros $\varrho_n=\beta_n+i\gamma_n$ of the Riemann zeta-function with ordinates $\gamma_n$ belonging to a given interval and for which the distance to the next zero is sufficiently large in comparison with the mean value $2\pi(\ln(\gamma_n/(2\pi)))^{-1}$ is obtained.

DOI: https://doi.org/10.4213/dm1108

Full text: PDF file (116 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2010, 20:4, 411–420

Bibliographic databases:

Document Type: Article
UDC: 511
Received: 17.02.2010

Citation: R. N. Boyarinov, “On large distances between neighbouring zeros of the Riemann zeta-function”, Diskr. Mat., 22:3 (2010), 75–82; Discrete Math. Appl., 20:4 (2010), 411–420

Citation in format AMSBIB
\Bibitem{Boy10}
\by R.~N.~Boyarinov
\paper On large distances between neighbouring zeros of the Riemann zeta-function
\jour Diskr. Mat.
\yr 2010
\vol 22
\issue 3
\pages 75--82
\mathnet{http://mi.mathnet.ru/dm1108}
\crossref{https://doi.org/10.4213/dm1108}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2762803}
\elib{http://elibrary.ru/item.asp?id=20730348}
\transl
\jour Discrete Math. Appl.
\yr 2010
\vol 20
\issue 4
\pages 411--420
\crossref{https://doi.org/10.1515/DMA.2010.025}
\elib{http://elibrary.ru/item.asp?id=22121427}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958452234}


Linking options:
  • http://mi.mathnet.ru/eng/dm1108
  • https://doi.org/10.4213/dm1108
  • http://mi.mathnet.ru/eng/dm/v22/i3/p75

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. N. Boyarinov, “Probabilistic methods in the theory of the Riemann zeta-function”, Theory Probab. Appl., 56:2 (2011), 181–192  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Дискретная математика
    Number of views:
    This page:201
    Full text:51
    References:21
    First page:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019