RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2010, Volume 22, Issue 4, Pages 104–120 (Mi dm1122)  

This article is cited in 4 scientific papers (total in 4 papers)

An algorithm to restore a linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a linear complication of its highest coordinate sequence

D. N. Bylkov, A. A. Nechaev


Abstract: Let $u$ be a linear recurring sequence of maximal period over the ring $\mathbf Z_{p^n}$ and be a pseudo-random sequence over the field $\mathbf Z_p$ obtained by multiplying the highest coordinate sequence of $u$ by some polynomial. In this paper we analyse possibilities and ways to restore $u$ from a given $v$. A short survey of earlier results is given.

DOI: https://doi.org/10.4213/dm1122

Full text: PDF file (178 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2010, 20:5-6, 591–609

Bibliographic databases:

UDC: 519.7
Received: 01.09.2010
Revised: 04.11.2010

Citation: D. N. Bylkov, A. A. Nechaev, “An algorithm to restore a linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a linear complication of its highest coordinate sequence”, Diskr. Mat., 22:4 (2010), 104–120; Discrete Math. Appl., 20:5-6 (2010), 591–609

Citation in format AMSBIB
\Bibitem{BylNec10}
\by D.~N.~Bylkov, A.~A.~Nechaev
\paper An algorithm to restore a~linear recurring sequence over the ring $R=\mathbf Z_{p^n}$ from a~linear complication of its highest coordinate sequence
\jour Diskr. Mat.
\yr 2010
\vol 22
\issue 4
\pages 104--120
\mathnet{http://mi.mathnet.ru/dm1122}
\crossref{https://doi.org/10.4213/dm1122}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2796792}
\elib{http://elibrary.ru/item.asp?id=20730363}
\transl
\jour Discrete Math. Appl.
\yr 2010
\vol 20
\issue 5-6
\pages 591--609
\crossref{https://doi.org/10.1515/DMA.2010.036}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952215645}


Linking options:
  • http://mi.mathnet.ru/eng/dm1122
  • https://doi.org/10.4213/dm1122
  • http://mi.mathnet.ru/eng/dm/v22/i4/p104

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. N. Bylkov, O. V. Kamlovskii, “Parametry bulevykh funktsii, postroennykh s ispolzovaniem starshikh koordinatnykh posledovatelnostei lineinykh rekurrent”, Matem. vopr. kriptogr., 3:4 (2012), 25–53  mathnet  crossref
    2. Zheng Q.-X., Qi W.-F., Tian T., “On the Distinctness of Binary Sequences Derived From Primitive Sequences Modulo Square-Free Odd Integers”, IEEE Trans. Inf. Theory, 59:1 (2013), 680–690  crossref  mathscinet  zmath  isi  scopus
    3. Zheng Q.-X., Qi W.-F., “Further Results on the Distinctness of Binary Sequences Derived From Primitive Sequences Modulo Square-Free Odd Integers”, IEEE Trans. Inf. Theory, 59:6 (2013), 4013–4019  crossref  mathscinet  zmath  isi  elib  scopus
    4. D. N. Bylkov, “Postroenie novykh klassov filtruyuschikh generatorov, ne imeyuschikh ekvivalentnykh sostoyanii”, Matem. vopr. kriptogr., 5:4 (2014), 17–39  mathnet  crossref
  • Дискретная математика
    Number of views:
    This page:413
    Full text:142
    References:37
    First page:25

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020