RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2011, Volume 23, Issue 1, Pages 28–45 (Mi dm1128)  

This article is cited in 1 scientific paper (total in 1 paper)

Calculation of the characteristic polynomial of a matrix

O. N. Pereslavtseva


Abstract: We consider efficient algorithms of calculation of the characteristic polynomials of matrices over commutative rings. We give estimates of complexity treated as the number of ring operations, and for the ring of integers the estimates are presented in terms of the number of multiplication operations over the machine words. We suggest a new algorithm to calculate the characteristic polynomial which has the best estimate of complexity in the ring operations. We give recommendations concerning applications of the algorithm of calculation of the characteristic polynomials depending on the size of the matrix, in particular, the algorithm suggested in this paper is recommended to be applied to integer-element matrices of size greater than 60.

DOI: https://doi.org/10.4213/dm1128

Full text: PDF file (179 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2011, 21:1, 109–129

Bibliographic databases:

UDC: 519.7
Received: 27.02.2009
Revised: 29.01.2011

Citation: O. N. Pereslavtseva, “Calculation of the characteristic polynomial of a matrix”, Diskr. Mat., 23:1 (2011), 28–45; Discrete Math. Appl., 21:1 (2011), 109–129

Citation in format AMSBIB
\Bibitem{Per11}
\by O.~N.~Pereslavtseva
\paper Calculation of the characteristic polynomial of a~matrix
\jour Diskr. Mat.
\yr 2011
\vol 23
\issue 1
\pages 28--45
\mathnet{http://mi.mathnet.ru/dm1128}
\crossref{https://doi.org/10.4213/dm1128}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2830695}
\elib{http://elibrary.ru/item.asp?id=20730370}
\transl
\jour Discrete Math. Appl.
\yr 2011
\vol 21
\issue 1
\pages 109--129
\crossref{https://doi.org/10.1515/DMA.2011.008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953309752}


Linking options:
  • http://mi.mathnet.ru/eng/dm1128
  • https://doi.org/10.4213/dm1128
  • http://mi.mathnet.ru/eng/dm/v23/i1/p28

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pereslavtseva O.N., “Parallelnyi modulyarnyi algoritm vychisleniya kharakteristicheskogo polinoma matritsy v koltse polinomov mnogikh peremennykh”, Vestn. Tambovskogo un-ta. Ser. Estestvennye i tekhnicheskie nauki, 17:2 (2012), 588–590  elib
  • Дискретная математика
    Number of views:
    This page:587
    Full text:144
    References:43
    First page:52

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020