RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2011, Volume 23, Issue 2, Pages 59–65 (Mi dm1141)  

This article is cited in 12 scientific papers (total in 12 papers)

An asynchronous double stochastic flow with initiation of superfluous events

A. M. Gortsev, L. A. Nezhelskaya


Abstract: We consider an asynchronous double stochastic flow with initiation of superfluous events (a generalised asynchronous flow), which is a mathematical model of information flows in computer networks, communication systems, etc. We study the stationary mode of the flow. We find the probability density $p(\tau)$ of the length of the interval between events in the flow and the joint probability density $p(\tau_1,\tau_2)$ of the lengths of two neighbouring intervals. We show that the generalised asynchronous flow is a correlated flow in the general case. We find conditions for the flow to become recursive or to degenerate into an elementary one.

DOI: https://doi.org/10.4213/dm1141

Full text: PDF file (99 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2011, 21:3, 283–290

Bibliographic databases:

UDC: 519.2
Received: 14.12.2007

Citation: A. M. Gortsev, L. A. Nezhelskaya, “An asynchronous double stochastic flow with initiation of superfluous events”, Diskr. Mat., 23:2 (2011), 59–65; Discrete Math. Appl., 21:3 (2011), 283–290

Citation in format AMSBIB
\Bibitem{GorNez11}
\by A.~M.~Gortsev, L.~A.~Nezhelskaya
\paper An asynchronous double stochastic flow with initiation of superfluous events
\jour Diskr. Mat.
\yr 2011
\vol 23
\issue 2
\pages 59--65
\mathnet{http://mi.mathnet.ru/dm1141}
\crossref{https://doi.org/10.4213/dm1141}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2865907}
\elib{http://elibrary.ru/item.asp?id=20730384}
\transl
\jour Discrete Math. Appl.
\yr 2011
\vol 21
\issue 3
\pages 283--290
\crossref{https://doi.org/10.1515/DMA.2011.017}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79961076154}


Linking options:
  • http://mi.mathnet.ru/eng/dm1141
  • https://doi.org/10.4213/dm1141
  • http://mi.mathnet.ru/eng/dm/v23/i2/p59

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Gortsev A.M., Leonova M.A., Nezhelskaya L.A., “Sovmestnaya plotnost veroyatnostei dlitelnosti intervalov obobschennogo asinkhronnogo potoka sobytii pri neprodlevayuschemsya mertvom vremeni”, Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika, 2012, no. 4, 14–25  mathscinet  elib
    2. Leonova M.A., Nezhelskaya L.A., “Otsenka dlitelnosti neprodlevayuschegosya mertvogo vremeni v obobschennom asinkhronnom potoke sobytii”, Izvestiya vysshikh uchebnykh zavedenii. Fizika, 56:9-2 (2013), 220–222  elib
    3. Gortsev A.M., Leonova M.A., Nezhelskaya L.A., “Sravnenie MP- i MM-otsenok dlitelnosti mertvogo vremeni v obobschennom asinkhronnom potoke sobytii”, Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika, 2013, no. 4(25), 32–42  elib
    4. Leonova M.A., Nezhelskaya L.A., “Otsenka maksimalnogo pravdopodobiya dlitelnosti mertvogo vremeni v obobschennom asinkhronnom potoke sobytii”, Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaya tekhnika i informatika, 2013, no. 2(23), 54–63  elib
    5. Bakholdina M., Gortsev A., “Joint Probability Density of the Intervals Length of Modulated Semi-Synchronous Integrated Flow of Events in Conditions of a Constant Dead Time and the Flow Recurrence Conditions”, Information Technologies and Mathematical Modelling: Queueing Theory and Applications, Itmm 2015, Communications in Computer and Information Science, 564, eds. Dudin A., Nazarov A., Yakupov R., Springer-Verlag Berlin, 2015, 13–27  crossref  isi  scopus
    6. Nezhel'skaya L., “Probability Density Function For Modulated Map Event Flows With Unextendable Dead Time”, Information Technologies and Mathematical Modelling: Queueing Theory and Applications, Itmm 2015, Communications in Computer and Information Science, 564, eds. Dudin A., Nazarov A., Yakupov R., Springer-Verlag Berlin, 2015, 141–151  crossref  isi  scopus
    7. Gortsev A.M., Sirotina M.N., “Probability of an Error in Estimation of States of a Modulated Synchronous Flow of Physical Events”, Russ. Phys. J., 59:7 (2016), 1016–1023  crossref  isi
    8. Nezhel'skaya L.A., “Estimation of the Unextendable Dead Time Period in a Flow of Physical Events by the Method of Maximum Likelihood”, Russ. Phys. J., 59:5 (2016), 651–662  crossref  isi
    9. Gortsev A.M., Solov'ev A.A., “Probability of Error in Estimating States of a Flow of Physical Events”, Russ. Phys. J., 59:5 (2016), 663–671  crossref  isi
    10. Nezhel'skaya L.A., “Conditions for Recurrence of a Flow of Physical Events with Unextendable Dead Time Period”, Russ. Phys. J., 58:12 (2016), 1859–1867  crossref  isi  scopus
    11. Gortsev A.M., Solov'ev A.A., “Estimation of Maximum Likelihood of the Unextendable Dead Time Period in a Flow of Physical Events”, Russ. Phys. J., 58:11 (2016), 1635–1644  crossref  isi  elib  scopus
    12. Gortsev A.M., Nezhel'skaya L.A., “Optimal Estimate of the States of a Generalized Asynchronous Event Flow With An Arbitrary Number of States”, Int. J. Geotech. Earthq., 2019, no. 47, 12–23  crossref  isi
  • Дискретная математика
    Number of views:
    This page:275
    Full text:93
    References:44
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019