RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2011, Volume 23, Issue 3, Pages 3–22 (Mi dm1149)  

This article is cited in 4 scientific papers (total in 4 papers)

A fast algorithm for the construction of polynomials modulo $k$ for $k$-valued functions for composite $k$

S. N. Selezneva


DOI: https://doi.org/10.4213/dm1149

Full text: PDF file (192 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2011, 21:5-6, 651–674

Bibliographic databases:

UDC: 519.7
Received: 16.02.2011

Citation: S. N. Selezneva, “A fast algorithm for the construction of polynomials modulo $k$ for $k$-valued functions for composite $k$”, Diskr. Mat., 23:3 (2011), 3–22; Discrete Math. Appl., 21:5-6 (2011), 651–674

Citation in format AMSBIB
\Bibitem{Sel11}
\by S.~N.~Selezneva
\paper A fast algorithm for the construction of polynomials modulo~$k$ for $k$-valued functions for composite~$k$
\jour Diskr. Mat.
\yr 2011
\vol 23
\issue 3
\pages 3--22
\mathnet{http://mi.mathnet.ru/dm1149}
\crossref{https://doi.org/10.4213/dm1149}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2895511}
\elib{http://elibrary.ru/item.asp?id=20730392}
\transl
\jour Discrete Math. Appl.
\yr 2011
\vol 21
\issue 5-6
\pages 651--674
\crossref{https://doi.org/10.1515/dma.2011.039}


Linking options:
  • http://mi.mathnet.ru/eng/dm1149
  • https://doi.org/10.4213/dm1149
  • http://mi.mathnet.ru/eng/dm/v23/i3/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Selezneva S.N., “Lineinaya otsenka skhemnoi slozhnosti raspoznavaniya polinomialnosti funktsii nad koltsom vychetov po sostavnomu modulyu”, Vestnik Moskovskogo universiteta. Seriya 15: Vychislitelnaya matematika i kibernetika, 2013, no. 1, 27a–31  mathscinet  elib
    2. \PAPER Быстрый алгоритм построения для $k$-значных функций полиномов по составному модулю $k$ Selezneva S.N., Intellektualnye sistemy, 17:1-4 (2013), 393–397  mathscinet  elib
    3. S. N. Selezneva, “On the number of functions of $k$-valued logic which are polynomials modulo composite $k$”, Discrete Math. Appl., 27:1 (2017), 7–14  mathnet  crossref  crossref  mathscinet  isi  elib
    4. D. G. Meshchaninov, “Closed classes of polynomials modulo $p^2$”, Discrete Math. Appl., 28:3 (2018), 167–178  mathnet  crossref  crossref  isi  elib
  • Дискретная математика
    Number of views:
    This page:401
    Full text:146
    References:47
    First page:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020