RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2014, Volume 26, Issue 3, Pages 30–44 (Mi dm1288)  

On a statistic for testing the homogeneity of polynomial samples

A. M. Zubkov, B. I. Selivanov

Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: We consider $M \geqslant 2$ independent polynomial samples with $N$ outcomes. For the case when $M$ and $N$ are fixed but sizes of samples tend to infinity we find limit distributions of a new statistic ${\sigma^2}$: chi-square distribution with $(M - 1)(N - 1)$ degrees of freedom if samples are statistically homogeneous, non-central chi-square distribution with the same number of degrees of freedom if samples are «convergent» to homogeneous ones, and normal distribution if samples are statistically nonhomogeneous.

Keywords: polynomial samples, homogeneity test, non-central chi-square distribution.

Funding Agency Grant Number
Russian Academy of Sciences - Federal Agency for Scientific Organizations


DOI: https://doi.org/10.4213/dm1288

Full text: PDF file (495 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2015, 25:2, 109–120

Bibliographic databases:

UDC: 579.234.3+519.214
Received: 26.12.2013

Citation: A. M. Zubkov, B. I. Selivanov, “On a statistic for testing the homogeneity of polynomial samples”, Diskr. Mat., 26:3 (2014), 30–44; Discrete Math. Appl., 25:2 (2015), 109–120

Citation in format AMSBIB
\Bibitem{ZubSel14}
\by A.~M.~Zubkov, B.~I.~Selivanov
\paper On a statistic for testing the homogeneity of polynomial samples
\jour Diskr. Mat.
\yr 2014
\vol 26
\issue 3
\pages 30--44
\mathnet{http://mi.mathnet.ru/dm1288}
\crossref{https://doi.org/10.4213/dm1288}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3309398}
\elib{http://elibrary.ru/item.asp?id=22834144}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 2
\pages 109--120
\crossref{https://doi.org/10.1515/dma-2015-0011}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000366853400005}
\elib{http://elibrary.ru/item.asp?id=24023358}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927917713}


Linking options:
  • http://mi.mathnet.ru/eng/dm1288
  • https://doi.org/10.4213/dm1288
  • http://mi.mathnet.ru/eng/dm/v26/i3/p30

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:240
    Full text:64
    References:24
    First page:20

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019