Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2014, Volume 26, Issue 4, Pages 23–35 (Mi dm1301)  

This article is cited in 1 scientific paper (total in 1 paper)

Arithmetic complexity of the Stirling transforms

S. B. Gashkov

M. V. Lomonosov Moscow State University

Abstract: For the linear Stirling transforms of both kinds, which are well-known in combinatorics, we obtain close to optimal estimates of the complexity of computation by vector addition chains and non-branching programs composed of arithmetic operations over real numbers. A relation between these problems and the Lagrange and Newton interpolation is discussed.

Keywords: Stirling transforms of the 1st and 2nd kinds, addition vector chains, circuits in arithmetic bases, the Lagrange and Newton interpolation, Vandermonde matrices, the Gauss $q$-binomial coefficient.

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00598
14-01-00671а


DOI: https://doi.org/10.4213/dm1301

Full text: PDF file (541 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2015, 25:2, 83–92

Bibliographic databases:

UDC: 519.712.4+510.52
Received: 01.06.2014

Citation: S. B. Gashkov, “Arithmetic complexity of the Stirling transforms”, Diskr. Mat., 26:4 (2014), 23–35; Discrete Math. Appl., 25:2 (2015), 83–92

Citation in format AMSBIB
\Bibitem{Gas14}
\by S.~B.~Gashkov
\paper Arithmetic complexity of the Stirling transforms
\jour Diskr. Mat.
\yr 2014
\vol 26
\issue 4
\pages 23--35
\mathnet{http://mi.mathnet.ru/dm1301}
\crossref{https://doi.org/10.4213/dm1301}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3467222}
\elib{https://elibrary.ru/item.asp?id=22834158}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 2
\pages 83--92
\crossref{https://doi.org/10.1515/dma-2015-0008}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000366853400002}
\elib{https://elibrary.ru/item.asp?id=24023462}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84927948063}


Linking options:
  • http://mi.mathnet.ru/eng/dm1301
  • https://doi.org/10.4213/dm1301
  • http://mi.mathnet.ru/eng/dm/v26/i4/p23

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. B. Gashkov, I. S. Sergeev, “On the Additive Complexity of GCD and LCM Matrices”, Math. Notes, 100:2 (2016), 199–212  mathnet  crossref  crossref  mathscinet  isi  elib
  • Дискретная математика
    Number of views:
    This page:362
    Full text:138
    References:36
    First page:32

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021