RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2014, Volume 26, Issue 4, Pages 59–65 (Mi dm1305)  

An approach to the classification of Boolean bent functions of the nonlinearity degree 3

V. I. Nozdrunov

Moscow

Abstract: We consider an approach to the classification of $n$-variable Boolean bent functions of the nonlinearity degree 3. We utilize the apparatus of bent rectangles introduced by S. V. Agievich. This apparatus was used for the classification of $8$-variable Boolean cubic bent functions. The results of our research allow to construct cubic bent functions that depend on an arbitrary even number of variables; the construction is based on well studied quadratic bent functions.

Keywords: bent functions, bent rectangles, quadratic forms, affine transformations.

DOI: https://doi.org/10.4213/dm1305

Full text: PDF file (398 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2015, 25:1, 25–30

Bibliographic databases:

Document Type: Article
UDC: 519.7
Received: 18.08.2014

Citation: V. I. Nozdrunov, “An approach to the classification of Boolean bent functions of the nonlinearity degree 3”, Diskr. Mat., 26:4 (2014), 59–65; Discrete Math. Appl., 25:1 (2015), 25–30

Citation in format AMSBIB
\Bibitem{Noz14}
\by V.~I.~Nozdrunov
\paper An approach to the classification of Boolean bent functions of the nonlinearity degree 3
\jour Diskr. Mat.
\yr 2014
\vol 26
\issue 4
\pages 59--65
\mathnet{http://mi.mathnet.ru/dm1305}
\crossref{https://doi.org/10.4213/dm1305}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3467226}
\elib{http://elibrary.ru/item.asp?id=22834162}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 1
\pages 25--30
\crossref{https://doi.org/10.1515/dma-2015-0003}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000366852600003}
\elib{http://elibrary.ru/item.asp?id=24009654}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84923253951}


Linking options:
  • http://mi.mathnet.ru/eng/dm1305
  • https://doi.org/10.4213/dm1305
  • http://mi.mathnet.ru/eng/dm/v26/i4/p59

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:150
    Full text:35
    References:14
    First page:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019