|
This article is cited in 2 scientific papers (total in 2 papers)
Free commutative medial $n$-ary groupoids
S. S. Davidov Yerevan State University
Abstract:
The solvability of the equational theory of commutative medial $n$-ary groupoids is in the paper used to describe the structure of the free commutative medial $n$-ary groupoid and to demonstrate that a commutative medial $n$-ary groupoid has a convex linear representation.
Keywords:
medial groupoids, convex linear representations.
DOI:
https://doi.org/10.4213/dm1313
Full text:
PDF file (448 kB)
References:
PDF file
HTML file
English version:
Discrete Mathematics and Applications, 2015, 25:4, 203–210
Bibliographic databases:
UDC:
512.548.2 Received: 20.06.2013
Citation:
S. S. Davidov, “Free commutative medial $n$-ary groupoids”, Diskr. Mat., 27:1 (2015), 34–43; Discrete Math. Appl., 25:4 (2015), 203–210
Citation in format AMSBIB
\Bibitem{Dav15}
\by S.~S.~Davidov
\paper Free commutative medial $n$-ary groupoids
\jour Diskr. Mat.
\yr 2015
\vol 27
\issue 1
\pages 34--43
\mathnet{http://mi.mathnet.ru/dm1313}
\crossref{https://doi.org/10.4213/dm1313}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3468139}
\elib{https://elibrary.ru/item.asp?id=23780133}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 4
\pages 203--210
\crossref{https://doi.org/10.1515/dma-2015-0020}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000366854600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939199540}
Linking options:
http://mi.mathnet.ru/eng/dm1313https://doi.org/10.4213/dm1313 http://mi.mathnet.ru/eng/dm/v27/i1/p34
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. V. Cheremushkin, “Medialnye cilno zavisimye $n$-arnye operatsii”, Diskret. matem., 32:2 (2020), 112–121
-
A. V. Litavrin, “Podsistemy i avtomorfizmy nekotorykh konechnykh magm poryadka $k+k^2$”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 20:4 (2020), 457–467
|
Number of views: |
This page: | 340 | Full text: | 79 | References: | 33 | First page: | 39 |
|