|
Complexity of implementation of parity functions in the implication–negation basis
Yu. A. Kombarov Lomonosov Moscow State University
Abstract:
The paper is concerned with circuits in the basis $\{x \to y, \overline{x}\}$. The exact value of the complexity of implementation of an even parity function is obtained and the minimal circuits implementing an odd parity function are described.
Keywords:
circuit, parity function, minimal circuit, complexity circuits.
DOI:
https://doi.org/10.4213/dm1316
Full text:
PDF file (712 kB)
References:
PDF file
HTML file
English version:
Discrete Mathematics and Applications, 2015, 25:4, 211–231
Bibliographic databases:
UDC:
519.714.4 Received: 17.09.2014
Citation:
Yu. A. Kombarov, “Complexity of implementation of parity functions in the implication–negation basis”, Diskr. Mat., 27:1 (2015), 73–97; Discrete Math. Appl., 25:4 (2015), 211–231
Citation in format AMSBIB
\Bibitem{Kom15}
\by Yu.~A.~Kombarov
\paper Complexity of implementation of parity functions in the implication--negation basis
\jour Diskr. Mat.
\yr 2015
\vol 27
\issue 1
\pages 73--97
\mathnet{http://mi.mathnet.ru/dm1316}
\crossref{https://doi.org/10.4213/dm1316}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3468142}
\elib{https://elibrary.ru/item.asp?id=23780137}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 4
\pages 211--231
\crossref{https://doi.org/10.1515/dma-2015-0021}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000366854600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939142713}
Linking options:
http://mi.mathnet.ru/eng/dm1316https://doi.org/10.4213/dm1316 http://mi.mathnet.ru/eng/dm/v27/i1/p73
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Number of views: |
This page: | 251 | Full text: | 82 | References: | 19 | First page: | 36 |
|