|
This article is cited in 2 scientific papers (total in 2 papers)
A generalization of Ore's theorem on irreducible polynomials over a finite field
A. A. Nechaeva, V. O. Popovb a Academy of Criptography of Russia
b CRYPTO-PRO
Abstract:
For an arbitrary prime power $q$, a criterion for irreducibility of a polynomial of the form $$ F(x) = x^{q^{m}-1}+a_{m-1}x^{q^{m-1}-1}+\ldots+a_1x^{q-1}+a_0, a_0\neq 0, $$ over the field $K = GF(q^t)$ is established.
Keywords:
irreducible polynomials, irreducibility criterion.
DOI:
https://doi.org/10.4213/dm1318
Full text:
PDF file (369 kB)
References:
PDF file
HTML file
English version:
Discrete Mathematics and Applications, 2015, 25:4, 241–243
Bibliographic databases:
UDC:
512.622 Received: 15.10.2014
Citation:
A. A. Nechaev, V. O. Popov, “A generalization of Ore's theorem on irreducible polynomials over a finite field”, Diskr. Mat., 27:1 (2015), 108–110; Discrete Math. Appl., 25:4 (2015), 241–243
Citation in format AMSBIB
\Bibitem{NecPop15}
\by A.~A.~Nechaev, V.~O.~Popov
\paper A generalization of Ore's theorem on irreducible polynomials over a finite field
\jour Diskr. Mat.
\yr 2015
\vol 27
\issue 1
\pages 108--110
\mathnet{http://mi.mathnet.ru/dm1318}
\crossref{https://doi.org/10.4213/dm1318}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3468144}
\elib{https://elibrary.ru/item.asp?id=23780139}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 4
\pages 241--243
\crossref{https://doi.org/10.1515/dma-2015-0023}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000366854600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939197668}
Linking options:
http://mi.mathnet.ru/eng/dm1318https://doi.org/10.4213/dm1318 http://mi.mathnet.ru/eng/dm/v27/i1/p108
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. V. Anashkin, “A generalization of Ore's theorem on polynomials”, Discrete Math. Appl., 26:5 (2016), 255–258
-
Song Yu., Li Zh., “The Construction and Determination of Irreducible Polynomials Over Finite Fields”, Advances in Swarm Intelligence, Icsi 2016, Pt II, Lecture Notes in Computer Science, 9713, eds. Tan Y., Shi Y., Li L., Springer Int Publishing Ag, 2016, 618–624
|
Number of views: |
This page: | 492 | Full text: | 122 | References: | 40 | First page: | 68 |
|