RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2016, Volume 28, Issue 4, Pages 91–99 (Mi dm1395)  

Bounded prefix concatenation operation and finite bases with respect to the superposition

S. S. Marchenkov

Lomonosov Moscow State University

Abstract: The paper is concerned with word functions over the alphabet $\{1,2\}$. Given arbitrary one-place functions $f_1,\ldots,f_l$, the class BPC$[f_1,\ldots,f_l]$ is defined as the closure of the set of simplest word functions and the functions $f_1,\ldots,f_l$ under the operations of superposition and bounded prefix concatenation. The class BPC$[f_1,\ldots,f_l]$ is shown to have a finite basis with respect to the superposition.

Keywords: operation of bounded prefix concatenation, finite basis with respect to the superposition.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00593_а
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 16-01-00593).


DOI: https://doi.org/10.4213/dm1395

Full text: PDF file (451 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2017, 27:5, 303–309

Bibliographic databases:

UDC: 519.716
Received: 22.03.2016

Citation: S. S. Marchenkov, “Bounded prefix concatenation operation and finite bases with respect to the superposition”, Diskr. Mat., 28:4 (2016), 91–99; Discrete Math. Appl., 27:5 (2017), 303–309

Citation in format AMSBIB
\Bibitem{Mar16}
\by S.~S.~Marchenkov
\paper Bounded prefix concatenation operation and finite bases with respect to the superposition
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 4
\pages 91--99
\mathnet{http://mi.mathnet.ru/dm1395}
\crossref{https://doi.org/10.4213/dm1395}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3699324}
\elib{http://elibrary.ru/item.asp?id=28119095}
\transl
\jour Discrete Math. Appl.
\yr 2017
\vol 27
\issue 5
\pages 303--309
\crossref{https://doi.org/10.1515/dma-2017-0031}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000414954500005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031818063}


Linking options:
  • http://mi.mathnet.ru/eng/dm1395
  • https://doi.org/10.4213/dm1395
  • http://mi.mathnet.ru/eng/dm/v28/i4/p91

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:158
    Full text:6
    References:26
    First page:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020