RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2016, Volume 28, Issue 4, Pages 139–149 (Mi dm1398)  

This article is cited in 2 scientific papers (total in 2 papers)

On the number of maximal independent sets in complete $q$-ary trees

D. S. Taletskiia, D. S. Malyshevb

a Lobachevski State University of Nizhni Novgorod
b State University – Higher School of Economics in Nizhnii Novgorod

Abstract: The paper is concerned with the asymptotic behaviour of the number $\operatorname{mi}(T_{q,n})$ of maximal independent sets in a complete $q$-ary tree of height $n$. For some constants $\alpha_2$ and $\beta_2$ the asymptotic formula $\operatorname{mi}(T_{2,n})\thicksim \alpha_2\cdot (\beta_2)^{2^n}$ is shown to hold as $n\to\infty$. It is also proved that $\operatorname{mi}(T_{q,3k})\thicksim \alpha^{(1)}_q\cdot(\beta_q)^{q^{3k}},\operatorname{mi}(T_{q,3k+1})\thicksim \alpha^{(2)}_q\cdot(\beta_q)^{q^{3k+1}},\operatorname{mi}(T_{q,3k+2})\thicksim \alpha^{(3)}_q\cdot(\beta_q)^{q^{3k+2}}$ as $k\to \infty$ for any sufficiently large $q$, some three pairwise distinct constants $\alpha^{(1)}_q,\alpha^{(2)}_q,\alpha^{(3)}_q$ and a constant $b_q$.

Keywords: maximal independent set, complete $q$-ary tree.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-31-60008_мол_а_дк
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 16-31-60008-mol_a_dk) and the Laboratory of algorithms and analysis of network structures at the National Research University “Higher School of Economics”, Nizhny Novgorod Branch.


DOI: https://doi.org/10.4213/dm1398

Full text: PDF file (483 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2017, 27:5, 311–318

Bibliographic databases:

UDC: 519.172.1
Received: 16.06.2016

Citation: D. S. Taletskii, D. S. Malyshev, “On the number of maximal independent sets in complete $q$-ary trees”, Diskr. Mat., 28:4 (2016), 139–149; Discrete Math. Appl., 27:5 (2017), 311–318

Citation in format AMSBIB
\Bibitem{TalMal16}
\by D.~S.~Taletskii, D.~S.~Malyshev
\paper On the number of maximal independent sets in complete $q$-ary trees
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 4
\pages 139--149
\mathnet{http://mi.mathnet.ru/dm1398}
\crossref{https://doi.org/10.4213/dm1398}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3699327}
\elib{http://elibrary.ru/item.asp?id=28119098}
\transl
\jour Discrete Math. Appl.
\yr 2017
\vol 27
\issue 5
\pages 311--318
\crossref{https://doi.org/10.1515/dma-2017-0032}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000414954500006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85031778325}


Linking options:
  • http://mi.mathnet.ru/eng/dm1398
  • https://doi.org/10.4213/dm1398
  • http://mi.mathnet.ru/eng/dm/v28/i4/p139

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. D. S. Taletskii, “O proizvodyaschikh funktsiyakh i predelnykh teoremakh, svyazannykh s maksimalnymi nezavisimymi mnozhestvami v grafakh-reshetkakh”, Zhurnal SVMO, 19:2 (2017), 105–116  mathnet  crossref  elib
    2. D. S. Taletskii, “O svoistvakh resheniya rekurrentnogo uravneniya, perechislyayuschego maksimalnye nezavisimye mnozhestva v polnykh derevyakh”, Zhurnal SVMO, 20:1 (2018), 46–54  mathnet  crossref  elib
  • Дискретная математика
    Number of views:
    This page:194
    Full text:7
    References:28
    First page:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020