RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2004, Volume 16, Issue 1, Pages 52–78 (Mi dm142)  

This article is cited in 5 scientific papers (total in 5 papers)

The standard basis of a polynomial ideal over a commutative Artinian chain ring

E. V. Gorbatov


Abstract: We construct a standard basis of an ideal of the polynomial ring $R[X]=R[x_1,\ldots,x_k]$ over commutative Artinian chain ring $R$, which generalises a Gröbner base of a polynomial ideal over fields. We adopt the notion of the leading term of a polynomial suggested by D. A. Mikhailov and A. A. Nechaev, but using the simplification schemes introduced by V. N. Latyshev. We prove that any canonical generating system constructed by D. A. Mikhailov and A. A. Nechaev is a standard basis of the special form. We give an algorithm (based on the notion of $S$-polynomial) which constructs standard bases and canonical generating systems of an ideal. We define minimal and reduced standard bases and give their characterisations. We prove that a Gröbner base $\chi$ of a polynomial ideal over the field $\bar R=R/\operatorname{rad}(R)$ can be lifted to a standard basis of the same cardinality over $R$ with respect to the natural epimorphism $\nu\colon R[X]\to \bar R[X]$ if and only if there is an ideal $I\triangleleft R[X]$ such that $I$ is a free $R$-module and $\bar{I}=(\chi)$.
The research was supported by the Russian Foundation for Basic Research, grant 02-01-00218, and by the President of the Russian Federation program of support of leading scientific schools, grant 1910.2003.1.

DOI: https://doi.org/10.4213/dm142

Full text: PDF file (2590 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2004, 14:1, 75–101

Bibliographic databases:

UDC: 512.8
Received: 10.11.2003

Citation: E. V. Gorbatov, “The standard basis of a polynomial ideal over a commutative Artinian chain ring”, Diskr. Mat., 16:1 (2004), 52–78; Discrete Math. Appl., 14:1 (2004), 75–101

Citation in format AMSBIB
\Bibitem{Gor04}
\by E.~V.~Gorbatov
\paper The standard basis of a polynomial ideal over a commutative Artinian chain ring
\jour Diskr. Mat.
\yr 2004
\vol 16
\issue 1
\pages 52--78
\mathnet{http://mi.mathnet.ru/dm142}
\crossref{https://doi.org/10.4213/dm142}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2069989}
\zmath{https://zbmath.org/?q=an:1096.13034}
\transl
\jour Discrete Math. Appl.
\yr 2004
\vol 14
\issue 1
\pages 75--101
\crossref{https://doi.org/10.1515/156939204774148820}


Linking options:
  • http://mi.mathnet.ru/eng/dm142
  • https://doi.org/10.4213/dm142
  • http://mi.mathnet.ru/eng/dm/v16/i1/p52

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. V. Gorbatov, “Standard bases concordant with the norm and computations in ideals and polylinear recurring sequences”, J. Math. Sci., 139:4 (2006), 6672–6707  mathnet  crossref  mathscinet  zmath
    2. E. V. Gorbatov, “Multiplicative orders on terms”, J. Math. Sci., 152:4 (2008), 517–521  mathnet  crossref  mathscinet  zmath
    3. Kuijper M., Schindelar K., “The predictable leading monomial property for polynomial vectors over a ring”, 2010 IEEE International Symposium on Information Theory, IEEE International Symposium on Information Theory, 2010, 1133–1137  crossref  isi  scopus
    4. Kuijper M., Schindelar K., “Minimal Grobner bases and the predictable leading monomial property”, Linear Algebra and Its Applications, 434:1 (2011), 104–116  crossref  mathscinet  zmath  isi  scopus
    5. Kuijper M., Pinto R., “An iterative algorithm for parametrization of shortest length linear shift registers over finite chain rings”, Des. Codes Cryptogr., 83:2 (2017), 283–305  crossref  mathscinet  zmath  isi  scopus
  • Дискретная математика
    Number of views:
    This page:534
    Full text:140
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020