RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2017, Volume 29, Issue 2, Pages 40–52 (Mi dm1420)  

Basic positively closed classes in three-valued logic

S. S. Marchenkov, A. V. Chernyshev

Lomonosov Moscow State University

Abstract: Basic positively closed classes are intersections of positively precomplete classes. We prove that three-valued logic contains exactly 79 basic positively closed classes. Each class is described in terms of endomorphism semigroups.

Keywords: three-valued logic, basic positively closed class.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00593
Research was partially supported by the Russian Basic Research Foundation, project 16-01-00593.} \abstract{ Basic positively closed classes are intersections of positively precomplete classes. We prove that three-valued logic contains exactly 79 basic positively closed classes. Each class is described in terms of endomorphism semigroups.


DOI: https://doi.org/10.4213/dm1420

Full text: PDF file (395 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2018, 28:3, 157–165

Bibliographic databases:

UDC: 519.716
Received: 21.04.2017

Citation: S. S. Marchenkov, A. V. Chernyshev, “Basic positively closed classes in three-valued logic”, Diskr. Mat., 29:2 (2017), 40–52; Discrete Math. Appl., 28:3 (2018), 157–165

Citation in format AMSBIB
\Bibitem{MarChe17}
\by S.~S.~Marchenkov, A.~V.~Chernyshev
\paper Basic positively closed classes in three-valued logic
\jour Diskr. Mat.
\yr 2017
\vol 29
\issue 2
\pages 40--52
\mathnet{http://mi.mathnet.ru/dm1420}
\crossref{https://doi.org/10.4213/dm1420}
\elib{http://elibrary.ru/item.asp?id=29437294}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 3
\pages 157--165
\crossref{https://doi.org/10.1515/dma-2018-0015}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000435373700002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048868004}


Linking options:
  • http://mi.mathnet.ru/eng/dm1420
  • https://doi.org/10.4213/dm1420
  • http://mi.mathnet.ru/eng/dm/v29/i2/p40

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:253
    References:26
    First page:49

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020