RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2017, Volume 29, Issue 2, Pages 109–132 (Mi dm1422)  

Local limit theorems for one class of distributions in probabilistic combinatorics

A. N. Timashev

Institute of Cryptography, Communications and Informatics, Academy of Federal Security Service of Russian Federation, Moscow

Abstract: Let a function $f(z)$ be decomposed into a power series with nonnegative coefficients which converges in a circle of positive radius $R.$ Let the distribution of the random variable $\xi_n$, $n\in\{1,2,\ldots\}$, be defined by the formula
$$P\{\xi_n=N\}=\frac{\mathrm{coeff}_{z^n}(\frac{(f(z))^N}{N!})}{\mathrm{coeff}_{z^n}(\exp(f(z)))}, N=0,1,\ldots$$
for some $|z|<R$ (if the denominator is positive). Examples of appearance of such distributions in probabilistic combinatorics are given. Local theorems on asymptotical normality for distributions of $\xi_n$ are proved in two cases: a) if $ f(z) = (1-z)^{-\la},   \la = \mathrm {const} \in(0,1]$ for $|z| <1$, and b) if all positive coefficients of expansion $ f (z) $ in a power series are equal to 1 and the set $A$ of their numbers has the form
$$ A = \{m^r   |   m \in \mathbb{N} \},     r = \mathrm {const},\; r \in \{2,3,\ldots\}.$$
A hypothetical general local limit normal theorem for random variables $ \xi_n$ is stated. Some examples of validity of the statement of this theorem are given.

Keywords: power series distributions, local asymptotical normality.

DOI: https://doi.org/10.4213/dm1422

Full text: PDF file (520 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2018, 28:6, 405–420

Bibliographic databases:

UDC: 519.214+519.212.2
Received: 16.03.2017

Citation: A. N. Timashev, “Local limit theorems for one class of distributions in probabilistic combinatorics”, Diskr. Mat., 29:2 (2017), 109–132; Discrete Math. Appl., 28:6 (2018), 405–420

Citation in format AMSBIB
\Bibitem{Tim17}
\by A.~N.~Timashev
\paper Local limit theorems for one class of distributions in probabilistic combinatorics
\jour Diskr. Mat.
\yr 2017
\vol 29
\issue 2
\pages 109--132
\mathnet{http://mi.mathnet.ru/dm1422}
\crossref{https://doi.org/10.4213/dm1422}
\elib{http://elibrary.ru/item.asp?id=29437299}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 6
\pages 405--420
\crossref{https://doi.org/10.1515/dma-2018-0036}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000452905000006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058798322}


Linking options:
  • http://mi.mathnet.ru/eng/dm1422
  • https://doi.org/10.4213/dm1422
  • http://mi.mathnet.ru/eng/dm/v29/i2/p109

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:184
    References:24
    First page:24

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020