RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2017, Volume 29, Issue 3, Pages 70–91 (Mi dm1453)  

Artinian bimodule with quasi-Frobenius bimodule of translations

A. A. Nechaev, V. N. Tsypyscheva

a Moscow Technological University

Abstract: The possibility to generalize the notion of a linear recurrent sequence (LRS) over a commutative ring to the case of a LRS over a non-commutative ring is discussed. In this context, an arbitrary bimodule $_AM_B$ over left- and right-Artinian rings $A$ and $B$, respectively, is associated with the equivalent bimodule of translations $_CM_Z$, where $C$ is the multiplicative ring of the bimodule $_AM_B$ and $Z$ is its center, and the relation between the quasi-Frobenius conditions for the bimodules $_AM_B$ and $_CM_Z$ is studied. It is demonstrated that, in the general case, the fact that $_AM_B$ is a quasi-Frobenius bimodule does not imply the validity of the quasi-Frobenius condition for the bimodule $_CM_Z$. However, under some additional assumptions it can be shown that if $_CM_Z$ is a quasi-Frobenius bimodule, then the bimodule $_AM_B$ is quasi-Frobenius as well. } \keywords{ Quasi-Frobenius bimodule, Artinian ring, multiplicative ring, bimodule of translatios, linear recurrent sequence

Keywords: Quasi-Frobenius bimodule, Artinian ring, multiplicative ring, bimodule of translatios, linear recurrent sequence.

DOI: https://doi.org/10.4213/dm1453

Full text: PDF file (562 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2019, 29:2, 103–119

Bibliographic databases:

UDC: 512.552 + 512.553
Received: 28.10.2016

Citation: A. A. Nechaev, V. N. Tsypyschev, “Artinian bimodule with quasi-Frobenius bimodule of translations”, Diskr. Mat., 29:3 (2017), 70–91; Discrete Math. Appl., 29:2 (2019), 103–119

Citation in format AMSBIB
\Bibitem{NecTsy17}
\by A.~A.~Nechaev, V.~N.~Tsypyschev
\paper Artinian bimodule with quasi-Frobenius bimodule of translations
\jour Diskr. Mat.
\yr 2017
\vol 29
\issue 3
\pages 70--91
\mathnet{http://mi.mathnet.ru/dm1453}
\crossref{https://doi.org/10.4213/dm1453}
\elib{http://elibrary.ru/item.asp?id=29887803}
\transl
\jour Discrete Math. Appl.
\yr 2019
\vol 29
\issue 2
\pages 103--119
\crossref{https://doi.org/10.1515/dma-2019-0010}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000465304800003}


Linking options:
  • http://mi.mathnet.ru/eng/dm1453
  • https://doi.org/10.4213/dm1453
  • http://mi.mathnet.ru/eng/dm/v29/i3/p70

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:201
    References:24
    First page:19

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020