RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2018, Volume 30, Issue 1, Pages 66–76 (Mi dm1459)  

On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain

V. G. Mikhailov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: The phenomenon of reduction of the set of permutations $H$ arising in theorems on the weak convergence of the number of pairs of $H$-equivalent tuples in a segment of an indecomposable finite Markov chain to discrete distributions of the Poisson type is investigated.

Keywords: finite Markov chain, permutation group, tuples of states, $H$-equivalent tuples

Funding Agency Grant Number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant no. 14-50-00005.


DOI: https://doi.org/10.4213/dm1459

Full text: PDF file (460 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2018, 28:2, 75–82

Bibliographic databases:

Document Type: Article
UDC: 519.212.2
Received: 04.09.2017
Revised: 16.10.2017

Citation: V. G. Mikhailov, “On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain”, Diskr. Mat., 30:1 (2018), 66–76; Discrete Math. Appl., 28:2 (2018), 75–82

Citation in format AMSBIB
\Bibitem{Mik18}
\by V.~G.~Mikhailov
\paper On the reduction property of the number of $H$-equivalent tuples of states in a discrete Markov chain
\jour Diskr. Mat.
\yr 2018
\vol 30
\issue 1
\pages 66--76
\mathnet{http://mi.mathnet.ru/dm1459}
\crossref{https://doi.org/10.4213/dm1459}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3781291}
\zmath{https://zbmath.org/?q=an:06862908}
\elib{http://elibrary.ru/item.asp?id=32641289}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 2
\pages 75--82
\crossref{https://doi.org/10.1515/dma-2018-0008}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000429576700002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045680416}


Linking options:
  • http://mi.mathnet.ru/eng/dm1459
  • https://doi.org/10.4213/dm1459
  • http://mi.mathnet.ru/eng/dm/v30/i1/p66

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:142
    References:12
    First page:14

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019