RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2017, Volume 29, Issue 4, Pages 130–142 (Mi dm1474)  

This article is cited in 2 scientific papers (total in 2 papers)

On bijunctive predicates over a finite set

S. N. Selezneva

Lomonosov Moscow State University

Abstract: The paper is concerned with representations of predicates over a finite set in the form of generalized conjunctive normal forms (GCNF). Properties of predicates GCNF are found which are preserved by some majority function. Such predicates are called generalized bijunctive predicates. These properties are used to construct new faster polynomial algorithms for the generalized satisfiability problem in the case when some majority function preserves all the original predicates.

Keywords: predicate over a finite set, function over a finite set, majority function, bijunctive predicate, conjunctive normal form, generalized satisfiability problem (constraint satisfaction problems), polynomial problem.

Funding Agency Grant Number
Russian Foundation for Basic Research 17-01-00782-а


DOI: https://doi.org/10.4213/dm1474

Full text: PDF file (477 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2019, 29:1, 49–58

Bibliographic databases:

UDC: 519.716
Received: 10.10.2017
Revised: 16.11.2017

Citation: S. N. Selezneva, “On bijunctive predicates over a finite set”, Diskr. Mat., 29:4 (2017), 130–142; Discrete Math. Appl., 29:1 (2019), 49–58

Citation in format AMSBIB
\Bibitem{Sel17}
\by S.~N.~Selezneva
\paper On bijunctive predicates over a~finite set
\jour Diskr. Mat.
\yr 2017
\vol 29
\issue 4
\pages 130--142
\mathnet{http://mi.mathnet.ru/dm1474}
\crossref{https://doi.org/10.4213/dm1474}
\elib{http://elibrary.ru/item.asp?id=30737815}
\transl
\jour Discrete Math. Appl.
\yr 2019
\vol 29
\issue 1
\pages 49--58
\crossref{https://doi.org/10.1515/dma-2019-0006}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000459400000006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062537612}


Linking options:
  • http://mi.mathnet.ru/eng/dm1474
  • https://doi.org/10.4213/dm1474
  • http://mi.mathnet.ru/eng/dm/v29/i4/p130

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. N. Selezneva, “O slabo polozhitelnykh predikatakh nad konechnym mnozhestvom”, Diskret. matem., 30:3 (2018), 127–140  mathnet  crossref  elib
    2. S. N. Selezneva, “On $m$-junctive predicates on a finite set”, J. Appl. Industr. Math., 13:3 (2019), 528–535  mathnet  crossref  crossref
  • Дискретная математика
    Number of views:
    This page:199
    References:26
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020