RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2018, Volume 30, Issue 2, Pages 14–26 (Mi dm1501)  

This article is cited in 1 scientific paper (total in 1 paper)

A subcritical decomposable branching process in a mixed environment

E. E. D'yakonova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: A two-type decomposable branching process is considered in which particles of the first type may produce at the death moment offspring of both types while particles of the second type may produce at the death moment offspring of their own type only. The reproduction law of the first type particles is specified by a random environment. The reproduction law of the second type particles is one and the same for all generations. A limit theorem is proved describing the conditional distribution of the number of particles in the process at time $nt,t\in (0,1]$, given the survival of the process up to moment $n\rightarrow \infty .$

Keywords: branching process, mixed environment, limit theorem.

Funding Agency Grant Number
Russian Science Foundation 14-50-00005


DOI: https://doi.org/10.4213/dm1501

Full text: PDF file (442 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2018, 28:5, 275–283

Bibliographic databases:

UDC: 519.218.27
Received: 05.02.2018
Revised: 14.05.2018

Citation: E. E. D'yakonova, “A subcritical decomposable branching process in a mixed environment”, Diskr. Mat., 30:2 (2018), 14–26; Discrete Math. Appl., 28:5 (2018), 275–283

Citation in format AMSBIB
\Bibitem{Dya18}
\by E.~E.~D'yakonova
\paper A subcritical decomposable branching process in a mixed environment
\jour Diskr. Mat.
\yr 2018
\vol 30
\issue 2
\pages 14--26
\mathnet{http://mi.mathnet.ru/dm1501}
\crossref{https://doi.org/10.4213/dm1501}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3808074}
\elib{http://elibrary.ru/item.asp?id=34940581}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 5
\pages 275--283
\crossref{https://doi.org/10.1515/dma-2018-0024}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000448699100001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056217762}


Linking options:
  • http://mi.mathnet.ru/eng/dm1501
  • https://doi.org/10.4213/dm1501
  • http://mi.mathnet.ru/eng/dm/v30/i2/p14

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Vatutin, E. E. Dyakonova, “Veroyatnost nevyrozhdeniya dlya odnogo klassa mnogotipnykh dokriticheskikh vetvyaschikhsya protsessov v sluchainoi srede”, Matem. zametki, 107:2 (2020), 163–177  mathnet  crossref
  • Дискретная математика
    Number of views:
    This page:167
    References:20
    First page:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020