RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2018, Volume 30, Issue 3, Pages 99–116 (Mi dm1509)  

Short single tests for logic networks under arbitrary stuck-at faults at outputs of gates

K. A. Popkov

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow

Abstract: The following facts are proved:
1) one can implement any non-constant Boolean function by an irredundant logic network in the basis $\{x&y,\overline x,x\oplus y\oplus z\}$ allowing a single fault detection test with a length not exceeding 2 regarding arbitrary stuck-at faults at outputs of gates;
2) there exists such a Boolean function $\psi$ on six variables that one can implement any non-constant Boolean function by an irredundant logic network in the basis $\{\psi\}$ allowing a single diagnostic test with a length not exceeding 3 regarding arbitrary stuck-at faults at outputs of gates.

Keywords: logic network, stuck-at fault, single fault detection test, single diagnostic test.

Funding Agency Grant Number
Russian Science Foundation 14-21-00025 П


DOI: https://doi.org/10.4213/dm1509

Full text: PDF file (544 kB)
First page: PDF file
References: PDF file   HTML file

Document Type: Article
UDC: 519.718.7
Received: 08.03.2018

Citation: K. A. Popkov, “Short single tests for logic networks under arbitrary stuck-at faults at outputs of gates”, Diskr. Mat., 30:3 (2018), 99–116

Citation in format AMSBIB
\Bibitem{Pop18}
\by K.~A.~Popkov
\paper Short single tests for logic networks under arbitrary stuck-at faults at outputs of gates
\jour Diskr. Mat.
\yr 2018
\vol 30
\issue 3
\pages 99--116
\mathnet{http://mi.mathnet.ru/dm1509}
\crossref{https://doi.org/10.4213/dm1509}
\elib{http://elibrary.ru/item.asp?id=35410173}


Linking options:
  • http://mi.mathnet.ru/eng/dm1509
  • https://doi.org/10.4213/dm1509
  • http://mi.mathnet.ru/eng/dm/v30/i3/p99

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:65
    References:8
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019