RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2004, Volume 16, Issue 2, Pages 79–84 (Mi dm153)  

This article is cited in 4 scientific papers (total in 4 papers)

On the McEliece public-key cryptosystem based on Reed-Muller binary codes

G. A. Karpunin


Abstract: We study the McEliece cryptosystem with $u$-fold use of binary Reed–Muller codes $\mathit{RM}(r,m)$. This modification of the McEliece cryptosystem was proposed by V. M. Sidelnikov in 1994 and combines high cryptographic security, transmission rate close to one, and moderate complexity of both enciphering and deciphering. For arbitrary values of the parameters $u$, $r$, and $m$ we give an upper bound for the cardinality of the set of public keys of this cryptosystem and calculate its exact value in the case of $u=2$ and $r=1$.

DOI: https://doi.org/10.4213/dm153

Full text: PDF file (606 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2004, 14:3, 257–262

Bibliographic databases:

UDC: 519.7
Received: 16.07.2002

Citation: G. A. Karpunin, “On the McEliece public-key cryptosystem based on Reed-Muller binary codes”, Diskr. Mat., 16:2 (2004), 79–84; Discrete Math. Appl., 14:3 (2004), 257–262

Citation in format AMSBIB
\Bibitem{Kar04}
\by G.~A.~Karpunin
\paper On the McEliece public-key cryptosystem based on Reed-Muller binary codes
\jour Diskr. Mat.
\yr 2004
\vol 16
\issue 2
\pages 79--84
\mathnet{http://mi.mathnet.ru/dm153}
\crossref{https://doi.org/10.4213/dm153}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2084570}
\zmath{https://zbmath.org/?q=an:1121.94019}
\transl
\jour Discrete Math. Appl.
\yr 2004
\vol 14
\issue 3
\pages 257--262
\crossref{https://doi.org/10.1515/1569392031905601}


Linking options:
  • http://mi.mathnet.ru/eng/dm153
  • https://doi.org/10.4213/dm153
  • http://mi.mathnet.ru/eng/dm/v16/i2/p79

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. V. Chizhov, “The key space of the McEliece–Sidelnikov cryptosystem”, Discrete Math. Appl., 19:5 (2009), 445–474  mathnet  crossref  crossref  mathscinet  zmath  elib  scopus
    2. I. V. Chizhov, “Obobschennye avtomorfizmy koda Rida–Mallera i kriptosistema Mak-Elisa–Sidelnikova”, PDM, 2009, prilozhenie № 1, 36–37  mathnet
    3. Chizhov I.V., “The number of public keys in the McEliece-Sidel'nikov cryptosystem”, Moscow Univ. Comput. Math. Cybernet., 33:3 (2009), 151–157  crossref  mathscinet  zmath  elib  scopus
    4. Moufek H., Guenda K., Gulliver T.A., “A New Variant of the Mceliece Cryptosystem Based on Qc-Ldpc and Qc-Mdpc Codes”, IEEE Commun. Lett., 21:4 (2017), 714–717  crossref  isi  scopus
  • Дискретная математика
    Number of views:
    This page:722
    Full text:217
    References:36
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018