Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2019, Volume 31, Issue 1, Pages 7–20 (Mi dm1545)  

Functional limit theorem for the local time of stopped random walk

V. I. Afanasyev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: Integer random walk $\{ S_{n}, n\geq 0\} $ with zero drift and finite variance $\sigma ^{2}$ stopped at the moment $T$ of the first visit to the half axis $( -\infty ,0] $ is considered. For the random process which associates the variable $u\geq 0$ with the number of visits the state $\lfloor u\sigma \sqrt{n}\rfloor $ by this walk conditioned on $T>n$, the functional limit theorem on the convergence to the local time of stopped Brownian meander is proved.

Keywords: conditioned Brownian motions, local time of conditioned Brownian motions, functional limit theorems

DOI: https://doi.org/10.4213/dm1545

Full text: PDF file (483 kB)
First page: PDF file
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2020, 30:3, 147–157

Bibliographic databases:

UDC: 519.214.6+519.217.31
Received: 09.10.2018

Citation: V. I. Afanasyev, “Functional limit theorem for the local time of stopped random walk”, Diskr. Mat., 31:1 (2019), 7–20; Discrete Math. Appl., 30:3 (2020), 147–157

Citation in format AMSBIB
\Bibitem{Afa19}
\by V.~I.~Afanasyev
\paper Functional limit theorem for the local time of stopped random walk
\jour Diskr. Mat.
\yr 2019
\vol 31
\issue 1
\pages 7--20
\mathnet{http://mi.mathnet.ru/dm1545}
\crossref{https://doi.org/10.4213/dm1545}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3920653}
\elib{https://elibrary.ru/item.asp?id=37045012}
\transl
\jour Discrete Math. Appl.
\yr 2020
\vol 30
\issue 3
\pages 147--157
\crossref{https://doi.org/10.1515/dma-2020-0014}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000542101200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087679858}


Linking options:
  • http://mi.mathnet.ru/eng/dm1545
  • https://doi.org/10.4213/dm1545
  • http://mi.mathnet.ru/eng/dm/v31/i1/p7

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:225
    References:23
    First page:23

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021