RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2003, Volume 15, Issue 2, Pages 149–159 (Mi dm202)  

This article is cited in 2 scientific papers (total in 2 papers)

On two chi-square-type statistics constructed from the frequencies of tuples of states of a multiple Markov chain

M. I. Tikhomirova, V. P. Chistyakov


Abstract: We consider a tuple of states of an $(s-1)$-order Markov chain whose transition probabilities depend on a small part of $s-1$ preceding states. We obtain limit distributions of certain $\chi^2$-statistics $X$ and $Y$ based on frequencies of tuples of states of the Markov chain. For the statistic $X$, frequencies of tuples of only those states are used on which the transition probabilities depend, and for the statistic $Y$, frequencies of $s$-tuples without gaps. The statistical test with statistic $X$ which distinguishes the hypotheses $H_1$ (a high-order Markov chain) and $H_0$ (an independent equiprobable sequence) appears to be more powerful than the test with statistic $Y$. The statistic $Z$ of the Neyman–Pearson test, as well as $X$, depends only on frequencies of tuples with gaps. The statistics $X$ and $Y$ are calculated without use of distribution parameters under the hypothesis $H_1$, and their probabilities of errors of the first and second kinds depend only on the non-centrality parameter, which is a function of transition probabilities. Thus, for these statistics the hypothesis $H_1$ can be considered as composite.
This research was supported by the Russian Foundation for Basic Research, grant 00–15–96136.

DOI: https://doi.org/10.4213/dm202

Full text: PDF file (681 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2003, 13:3, 319–329

Bibliographic databases:

UDC: 519.2
Received: 29.01.2003

Citation: M. I. Tikhomirova, V. P. Chistyakov, “On two chi-square-type statistics constructed from the frequencies of tuples of states of a multiple Markov chain”, Diskr. Mat., 15:2 (2003), 149–159; Discrete Math. Appl., 13:3 (2003), 319–329

Citation in format AMSBIB
\Bibitem{TikChi03}
\by M.~I.~Tikhomirova, V.~P.~Chistyakov
\paper On two chi-square-type statistics constructed from the frequencies of tuples of states of a multiple Markov chain
\jour Diskr. Mat.
\yr 2003
\vol 15
\issue 2
\pages 149--159
\mathnet{http://mi.mathnet.ru/dm202}
\crossref{https://doi.org/10.4213/dm202}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2006684}
\zmath{https://zbmath.org/?q=an:1046.62080}
\transl
\jour Discrete Math. Appl.
\yr 2003
\vol 13
\issue 3
\pages 319--329
\crossref{https://doi.org/10.1515/156939203322385928}


Linking options:
  • http://mi.mathnet.ru/eng/dm202
  • https://doi.org/10.4213/dm202
  • http://mi.mathnet.ru/eng/dm/v15/i2/p149

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Yu. S. Kharin, A. I. Petlitskii, “A Markov chain of order $s$ with $r$ partial connections and statistical inference on its parameters”, Discrete Math. Appl., 17:3 (2007), 295–317  mathnet  crossref  crossref  mathscinet  zmath  elib
    2. D. V. Shuvaev, “O podposledovatelnostyakh markovskikh posledovatelnostei”, Matem. vopr. kriptogr., 7:4 (2016), 133–142  mathnet  crossref  mathscinet  elib
  • Дискретная математика
    Number of views:
    This page:340
    Full text:105
    References:24
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019