Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2001, Volume 13, Issue 4, Pages 73–91 (Mi dm300)  

This article is cited in 5 scientific papers (total in 5 papers)

A functional limit theorem for a critical branching process in a random environment

V. I. Afanasyev


Abstract: Let $\{\xi_n\}$ be a critical branching process in a random environment, and let $m_n$ be the mathematical expectation of $\xi_n$ under the condition that the random environment is fixed. We prove a theorem on convergence of the sequence of branching processes $\{\xi_{[nt]}/m_{[nt]}, t\in(0,1] \mid \xi_n>0\}$ as $n\to\infty$ in distribution in the corresponding functional space. This theorem extends the earlier result of the author proved under the assumption that the generating function of the number of offspring is linear-fractional.

DOI: https://doi.org/10.4213/dm300

Full text: PDF file (1184 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2001, 11:6, 587–606

Bibliographic databases:

UDC: 519.2
Received: 10.11.2001

Citation: V. I. Afanasyev, “A functional limit theorem for a critical branching process in a random environment”, Diskr. Mat., 13:4 (2001), 73–91; Discrete Math. Appl., 11:6 (2001), 587–606

Citation in format AMSBIB
\Bibitem{Afa01}
\by V.~I.~Afanasyev
\paper A~functional limit theorem for a critical branching process in a random environment
\jour Diskr. Mat.
\yr 2001
\vol 13
\issue 4
\pages 73--91
\mathnet{http://mi.mathnet.ru/dm300}
\crossref{https://doi.org/10.4213/dm300}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1901784}
\zmath{https://zbmath.org/?q=an:1102.60306}
\transl
\jour Discrete Math. Appl.
\yr 2001
\vol 11
\issue 6
\pages 587--606


Linking options:
  • http://mi.mathnet.ru/eng/dm300
  • https://doi.org/10.4213/dm300
  • http://mi.mathnet.ru/eng/dm/v13/i4/p73

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Afanasyev, “On the ratio between the maximal and total numbers of individuals in a critical branching process in a random environment”, Theory Probab. Appl., 48:3 (2004), 384–399  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. V. A. Vatutin, E. E. D'yakonova, “Galton–Watson branching processes in a random environment. I: limit theorems”, Theory Probab. Appl., 48:2 (2004), 314–336  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. Afanasyev V.I., Geiger J., Kersting G., Vatutin V.A., “Criticality for branching processes in random environment”, Annals of Probability, 33:2 (2005), 645–673  crossref  mathscinet  zmath  isi  scopus
    4. V. A. Vatutin, E. E. Dyakonova, S. Sagitov, “Evolution of branching processes in a random environment”, Proc. Steklov Inst. Math., 282 (2013), 220–242  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    5. Vatutin V. Dyakonova E., “Path to Survival For the Critical Branching Processes in a Random Environment”, J. Appl. Probab., 54:2 (2017), 588–602  crossref  mathscinet  isi  scopus
  • Дискретная математика
    Number of views:
    This page:378
    Full text:177
    References:45
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021