RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2001, Volume 13, Issue 4, Pages 60–72 (Mi dm310)  

This article is cited in 4 scientific papers (total in 4 papers)

On the distribution of the number of cycles of a given length in the class of permutations with known number of cycles

A. N. Timashev


Abstract: We consider the set of all permutations of degree $n$ with $N$ cycles. We assume that the uniform distribution is defined on this set and consider the random variable equal to the number of cycles of a given length in the random permutation from this set. We obtain the asymptotic values of the mathematical expectation and the variance of this random variable and prove the limit theorems on the convergence to the Poisson and the Gaussian distributions as $n,N\to\infty$. We give the asymptotic expansions for the number of permutations of degree $n$ with $N$ cycles among which there are exactly $k=k(n,N)$ of a given length.

DOI: https://doi.org/10.4213/dm310

Full text: PDF file (887 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2001, 11:5, 471–483

Bibliographic databases:

UDC: 519.2
Received: 25.05.2000

Citation: A. N. Timashev, “On the distribution of the number of cycles of a given length in the class of permutations with known number of cycles”, Diskr. Mat., 13:4 (2001), 60–72; Discrete Math. Appl., 11:5 (2001), 471–483

Citation in format AMSBIB
\Bibitem{Tim01}
\by A.~N.~Timashev
\paper On the distribution of the number of cycles of a given length in the class of
permutations with known number of cycles
\jour Diskr. Mat.
\yr 2001
\vol 13
\issue 4
\pages 60--72
\mathnet{http://mi.mathnet.ru/dm310}
\crossref{https://doi.org/10.4213/dm310}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1901783}
\zmath{https://zbmath.org/?q=an:1046.60008}
\transl
\jour Discrete Math. Appl.
\yr 2001
\vol 11
\issue 5
\pages 471--483


Linking options:
  • http://mi.mathnet.ru/eng/dm310
  • https://doi.org/10.4213/dm310
  • http://mi.mathnet.ru/eng/dm/v13/i4/p60

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. V. Cherepanova, “Limit distributions of the number of cycles of given length in a random permutation with a known number of cycles”, Discrete Math. Appl., 13:5 (2003), 507–522  mathnet  crossref  crossref  mathscinet  zmath
    2. A. V. Kolchin, “On limit theorems for the generalised allocation scheme”, Discrete Math. Appl., 13:6 (2003), 627–636  mathnet  crossref  crossref  mathscinet  zmath
    3. E. V. Cherepanova, “On the rate of convergence of the distribution of the number of cycles of given length in a random permutation with known number of cycles to the limit distributions”, Discrete Math. Appl., 16:4 (2006), 385–400  mathnet  crossref  crossref  mathscinet  zmath  elib
    4. A. V. Kolchin, V. F. Kolchin, “On transition of distributions of sums of independent identically distributed random variables from one lattice to another in the generalised allocation scheme”, Discrete Math. Appl., 16:6 (2006), 527–540  mathnet  crossref  crossref  mathscinet  zmath  elib
  • Дискретная математика
    Number of views:
    This page:304
    Full text:105
    References:32
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019