RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 2006, Volume 18, Issue 1, Pages 126–145 (Mi dm37)  

Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables

T. A. Belkina, M. S. Levochkina


Abstract: A linear discrete time dynamic control system with quadratic cost function perturbed by a sequence of dependent random variables is investigated from the point of view of the so-called probabilistic optimality criteria. In problems of stochastic optimisation, these criteria are related to the study of the asymptotic behaviour (in some probabilistic sense) of an integral cost functional as the horizon of planning tends to infinity. We obtain estimates of the rate of increasing of the defect of the optimal control, that is, the positive part of the difference between values of the cost functional under the optimal control and an arbitrary control, it is shown that these estimates are connected with parameters of the perturbing process. The results are applied to a model of optimal pension funding as a model of dynamic control.

DOI: https://doi.org/10.4213/dm37

Full text: PDF file (1489 kB)
References: PDF file   HTML file

English version:
Discrete Mathematics and Applications, 2006, 16:2, 135–153

Bibliographic databases:

UDC: 519.2
Received: 14.01.2006

Citation: T. A. Belkina, M. S. Levochkina, “Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables”, Diskr. Mat., 18:1 (2006), 126–145; Discrete Math. Appl., 16:2 (2006), 135–153

Citation in format AMSBIB
\Bibitem{BelLev06}
\by T.~A.~Belkina, M.~S.~Levochkina
\paper Stochastic optimality in the problem of a linear controller perturbed by a sequence of dependent random variables
\jour Diskr. Mat.
\yr 2006
\vol 18
\issue 1
\pages 126--145
\mathnet{http://mi.mathnet.ru/dm37}
\crossref{https://doi.org/10.4213/dm37}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2254740}
\zmath{https://zbmath.org/?q=an:1133.93046}
\elib{http://elibrary.ru/item.asp?id=9188337}
\transl
\jour Discrete Math. Appl.
\yr 2006
\vol 16
\issue 2
\pages 135--153
\crossref{https://doi.org/10.1515/156939206777344601}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746049454}


Linking options:
  • http://mi.mathnet.ru/eng/dm37
  • https://doi.org/10.4213/dm37
  • http://mi.mathnet.ru/eng/dm/v18/i1/p126

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:269
    Full text:117
    References:40
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019