RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 1999, Volume 11, Issue 4, Pages 48–57 (Mi dm391)  

This article is cited in 1 scientific paper (total in 1 paper)

Conditions for the uniqueness of the moment problem in the class of $q$-distributions

A. N. Alekseichuk


Abstract: Let $K_q$ be the class of probability distributions on the set of non-negative integer powers of a number $q>1$ ($q$-distributions), $\mathsf P=\{p_k=P(q^k), k=0,1,\ldots\}$ is a distribution from the class $K_q$ which has the moments of all orders. It is shown that in order that the distribution $\mathsf P$ is uniquely determined in the class $K_q$ by the sequence of its moments provided that $p_k>0$, $k=0,1,\ldots$, it is necessary, and under the condition that
$$ \operatornamewithlimits{sup lim}_{k\to\infty} (p_kq^{\binom k2})^{1/k}<\infty, $$
sufficient, that
$$ \operatornamewithlimits{inf lim}_{k\to\infty} p_{2k}q^{\binom{2k}k} =\operatornamewithlimits{inf lim}_{k\to\infty} p_{2k+1}q^{\binom{2k+1}{2}}=0. $$

These results are applied in the study of the limit distribution of the number of solutions of a system of random homogeneous equations with equiprobable matrix of coefficients over a finite local ring of principle ideals.

DOI: https://doi.org/10.4213/dm391

Full text: PDF file (658 kB)

English version:
Discrete Mathematics and Applications, 1999, 9:6, 615–625

Bibliographic databases:

UDC: 519.21
Received: 22.12.1998

Citation: A. N. Alekseichuk, “Conditions for the uniqueness of the moment problem in the class of $q$-distributions”, Diskr. Mat., 11:4 (1999), 48–57; Discrete Math. Appl., 9:6 (1999), 615–625

Citation in format AMSBIB
\Bibitem{Ale99}
\by A.~N.~Alekseichuk
\paper Conditions for the uniqueness of the moment problem in the class of $q$-distributions
\jour Diskr. Mat.
\yr 1999
\vol 11
\issue 4
\pages 48--57
\mathnet{http://mi.mathnet.ru/dm391}
\crossref{https://doi.org/10.4213/dm391}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1761011}
\zmath{https://zbmath.org/?q=an:0971.05015}
\transl
\jour Discrete Math. Appl.
\yr 1999
\vol 9
\issue 6
\pages 615--625


Linking options:
  • http://mi.mathnet.ru/eng/dm391
  • https://doi.org/10.4213/dm391
  • http://mi.mathnet.ru/eng/dm/v11/i4/p48

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Cooper C., “On the distribution of rank of a random matrix over a finite field”, Random Structures & Algorithms, 17:3–4 (2000), 197–212  crossref  mathscinet  zmath  isi
  • Дискретная математика
    Number of views:
    This page:218
    Full text:101
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021