|
This article is cited in 3 scientific papers (total in 3 papers)
On a consequence of the Krohn–Rhodes theorem
S. V. Aleshin
Abstract:
The Krohn–Rhodes theorem on the cascade connected automata was proved
under the assumption that the basis contains special group automata.
In this paper, we show that if the basis contains the constant automata,
then this restriction can be omitted and for any simple group $G$
it is sufficient to take an arbitrary group automaton, whose group
has $G$ as a divisor.
DOI:
https://doi.org/10.4213/dm392
Full text:
PDF file (862 kB)
English version:
Discrete Mathematics and Applications, 1999, 9:6, 583–592
Bibliographic databases:
UDC:
519.7 Received: 15.02.1999
Citation:
S. V. Aleshin, “On a consequence of the Krohn–Rhodes theorem”, Diskr. Mat., 11:4 (1999), 101–109; Discrete Math. Appl., 9:6 (1999), 583–592
Citation in format AMSBIB
\Bibitem{Ale99}
\by S.~V.~Aleshin
\paper On a consequence of the Krohn--Rhodes theorem
\jour Diskr. Mat.
\yr 1999
\vol 11
\issue 4
\pages 101--109
\mathnet{http://mi.mathnet.ru/dm392}
\crossref{https://doi.org/10.4213/dm392}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1761016}
\zmath{https://zbmath.org/?q=an:0966.68100}
\transl
\jour Discrete Math. Appl.
\yr 1999
\vol 9
\issue 6
\pages 583--592
Linking options:
http://mi.mathnet.ru/eng/dm392https://doi.org/10.4213/dm392 http://mi.mathnet.ru/eng/dm/v11/i4/p101
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
S. V. Aleshin, “Automata in algebra”, J. Math. Sci., 168:1 (2010), 14–20
-
Letunovskii A.A., “O zadache vyrazimosti avtomatov otnositelno superpozitsii dlya sistem s fiksirovannoi dobavkoi”, Intellektualnye sistemy v proizvodstve, 2012, no. 1, 36–50
-
A. A. Letunovskii, “Cycle indices of an automaton”, Discrete Math. Appl., 23:5-6 (2013), 445–450
|
Number of views: |
This page: | 301 | Full text: | 166 | First page: | 1 |
|