|
This article is cited in 6 scientific papers (total in 6 papers)
Sign-invariant structures of matrices, and discrete models
V. G. Il'ichev, O. A. Il'icheva
Abstract:
We consider the asymptotic behaviour of linear discrete systems
determined by the so called $NZ$-matrices. We describe the sign-structures
of such matrices (sign-invariant and pulsar) for which
a non-trivial equilibrium or a periodical behaviour, respectively,
are observed. We apply the sign-invariant matrices to analysis
of dynamics of non-linear non-autonomous models of competition.
DOI:
https://doi.org/10.4213/dm397
Full text:
PDF file (1232 kB)
English version:
Discrete Mathematics and Applications, 1999, 9:6, 665–677
Bibliographic databases:
UDC:
519.7 Received: 09.09.1997
Citation:
V. G. Il'ichev, O. A. Il'icheva, “Sign-invariant structures of matrices, and discrete models”, Diskr. Mat., 11:4 (1999), 89–100; Discrete Math. Appl., 9:6 (1999), 665–677
Citation in format AMSBIB
\Bibitem{IliIli99}
\by V.~G.~Il'ichev, O.~A.~Il'icheva
\paper Sign-invariant structures of matrices, and discrete models
\jour Diskr. Mat.
\yr 1999
\vol 11
\issue 4
\pages 89--100
\mathnet{http://mi.mathnet.ru/dm397}
\crossref{https://doi.org/10.4213/dm397}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1761015}
\zmath{https://zbmath.org/?q=an:0965.15028}
\transl
\jour Discrete Math. Appl.
\yr 1999
\vol 9
\issue 6
\pages 665--677
Linking options:
http://mi.mathnet.ru/eng/dm397https://doi.org/10.4213/dm397 http://mi.mathnet.ru/eng/dm/v11/i4/p89
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. G. Ilichev, A. I. Zadorozhnyi, “K modelirovaniyu dinamiki grupp”, Matem. modelirovanie, 14:12 (2002), 72–84
-
V. G. Ilichev, O. A. Ilicheva, “Analiz modelei konkurentsii v postoyannoi i periodicheskoi srede”, Matem. modelirovanie, 14:3 (2002), 71–83
-
V. G. Il'ichev, “Hereditary properties of nonautonomous dynamical systems and their application in competition models”, Russian Math. (Iz. VUZ), 46:6 (2002), 24–34
-
V. G. Il'ichev, “Local and global properties of nonautonomous dynamical systems and their application to competition models”, Siberian Math. J., 44:3 (2003), 490–499
-
V. G. Ilichev, “Inheritance Principle in Dynamical Systems”, Math. Notes, 90:6 (2011), 838–849
-
Il'ichev V.G., “Inheritance Principle in Dynamical Systems and an Application in Ecological Models”, Differ Equ, 47:9 (2011), 1259–1270
|
Number of views: |
This page: | 352 | Full text: | 157 | First page: | 1 |
|