RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskr. Mat., 1999, Volume 11, Issue 4, Pages 58–64 (Mi dm399)  

Probabilities of events related to common predecessors of two vertices in a generalized model of recursive trees

D. A. Kuropatkin


Abstract: We say that a random tree $T_n$ with $n$ vertices and $n-1$ edges is a generalized recursive one if either $n=1$, or $n>1$ and $T_n$ is the result of linking some $n$th vertex to some vertex of a random recursive tree $T_{n-1}$. The probability to choose a particular vertex is defined by some sequence $\{\alpha_i\colon \alpha_i>0\}_{i=1}^\infty$. We study the probabilities of some events related to common predecessors of vertices.

DOI: https://doi.org/10.4213/dm399

Full text: PDF file (482 kB)

English version:
Discrete Mathematics and Applications, 1999, 9:5, 473–480

Bibliographic databases:

UDC: 519.2
Received: 25.08.1998

Citation: D. A. Kuropatkin, “Probabilities of events related to common predecessors of two vertices in a generalized model of recursive trees”, Diskr. Mat., 11:4 (1999), 58–64; Discrete Math. Appl., 9:5 (1999), 473–480

Citation in format AMSBIB
\Bibitem{Kur99}
\by D.~A.~Kuropatkin
\paper Probabilities of events related to common predecessors of two vertices in a generalized model of recursive trees
\jour Diskr. Mat.
\yr 1999
\vol 11
\issue 4
\pages 58--64
\mathnet{http://mi.mathnet.ru/dm399}
\crossref{https://doi.org/10.4213/dm399}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1761012}
\zmath{https://zbmath.org/?q=an:0966.05071}
\transl
\jour Discrete Math. Appl.
\yr 1999
\vol 9
\issue 5
\pages 473--480


Linking options:
  • http://mi.mathnet.ru/eng/dm399
  • https://doi.org/10.4213/dm399
  • http://mi.mathnet.ru/eng/dm/v11/i4/p58

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Дискретная математика
    Number of views:
    This page:190
    Full text:109
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021